Publications by authors named "Philip O'Neil"

Recent technical advances in combinatorial chemistry, genomics, and proteomics have made available large databases of biological and chemical information that have the potential to dramatically improve our understanding of cancer biology at the molecular level. Such an understanding of cancer biology could have a substantial impact on how we detect, diagnose, and manage cancer cases in the clinical setting. One of the biggest challenges facing clinical oncologists is how to extract clinically useful knowledge from the overwhelming amount of raw molecular data that are currently available.

View Article and Find Full Text PDF

Using data mining techniques, we have studied a subset (1400) of compounds from the large public National Cancer Institute (NCI) compounds data repository. We first carried out a functional class identity assignment for the 60 NCI cancer testing cell lines via hierarchical clustering of gene expression data. Comprised of nine clinical tissue types, the 60 cell lines were placed into six classes-melanoma, leukemia, renal, lung, and colorectal, and the sixth class was comprised of mixed tissue cell lines not found in any of the other five classes.

View Article and Find Full Text PDF