Publications by authors named "Philip N Tsichlis"

Herpes Simplex Virus 1 evades the host immune system by expressing a protein, ICP47, that binds to and inhibits the heterodimeric Transporter Associated with Antigen Processing (TAP). We screened a library of 1786 variants in TAP2, one of the components of the TAP heterodimer, and identified 39 variants that were resistant to inhibition by ICP47. Of these 39 variants, five were individually tested, and three (T257I, S274H, and T244R) were confirmed to be significantly resistant to inhibition by ICP47.

View Article and Find Full Text PDF

KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark.

View Article and Find Full Text PDF

tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs.

View Article and Find Full Text PDF

Introduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms.

Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism.

View Article and Find Full Text PDF

Despite recent advances in treatment, melanoma remains the deadliest form of skin cancer due to its highly metastatic nature. Melanomas harboring oncogenic BRAF mutations combined with PTEN loss exhibit unrestrained PI3K/AKT signaling and increased invasiveness. However, the contribution of different AKT isoforms to melanoma initiation, progression, and metastasis has not been comprehensively explored, and questions remain about whether individual isoforms play distinct or redundant roles in each step.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is one of the most diagnosed forms of leukemia worldwide and it is usually classified into two forms: indolent and aggressive. These two forms are characterized by distinct molecular features that drive different responses to treatment and clinical outcomes. In this context, a better understanding of the molecular landscape of the CLL forms may potentially lead to the development of new drugs or the identification of novel biomarkers.

View Article and Find Full Text PDF

Despite recent advances in treatment, melanoma remains the deadliest form of skin cancer, due to its highly metastatic nature. Melanomas harboring oncogenic BRAF mutations combined with PTEN loss exhibit unrestrained PI3K/AKT signaling and increased invasiveness. However, the contribution of different AKT isoforms to melanoma initiation, progression, and metastasis has not been comprehensively explored, and questions remain whether individual isoforms play distinct or redundant roles in each step.

View Article and Find Full Text PDF

Introduction: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms.

Methods: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism.

View Article and Find Full Text PDF

Macrophages display an array of activation phenotypes depending on the activation signal and the cellular microenvironment. The type and magnitude of the response depend on signaling molecules as well as on the epigenetic and metabolic status of the cells at the time of activation. The AKT family of kinases consists of three isoforms encoded by independent genes possessing similar functions and structures.

View Article and Find Full Text PDF

Lung cancer is the second most commonly diagnosed cancer and the leading cause of cancer deaths worldwide. Among its subtypes, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the most common, accounting for more than 85% of lung cancer diagnoses. Despite the incredible efforts and recent advances in lung cancer treatments, patients affected by this condition still have a poor prognosis.

View Article and Find Full Text PDF

Akt is a PI3K-activated serine-threonine kinase that exists in three distinct isoforms. Akt's expression in most immune cells, either at baseline or upon activation, reflects its importance in the immune system. While Akt is most highly expressed in innate immune cells, it plays crucial roles in both innate and adaptive immune cell development and/or effector functions.

View Article and Find Full Text PDF

Soft tissue sarcomas (STS) are a biologically diverse group of mesenchymal tumors that predominantly exhibit a poor prognosis. Surgical resection is considered the mainstay of treatment and provides the only chance for long-term survival. However, some patients present with locally advanced, unresectable disease, and for those who are able to undergo resection, tumor recurrence occurs in over half of patients.

View Article and Find Full Text PDF

Background: Changes in the expression and activity of the AKT oncogene play an important role in psychiatric disease. We present translational data assessing the role of AKT in psychiatric symptoms.

Methods: (1) We assessed the protein activity of an AKT3 mutant harboring a PH domain mutation (Q60H) detected in a patient with schizophrenia, the corresponding AKT1 mutant (Q61H), and wild-type AKT1 and AKT3 transduced in AKT-null mouse fibroblasts and modeled the Q61H mutation onto the crystal structure of the Akt1 PH domain.

View Article and Find Full Text PDF

Small cell lung cancer (SCLC) is an extremely aggressive neuroendocrine tumor, accounting for approximated 13% of all lung cancer cases. SCLC is characterized by rapid growth and early metastasis. Despite marked improvements in the number and efficacy of targeted, therapeutic options and overall survival rates in SCLC have remained nearly unchanged for almost three decades.

View Article and Find Full Text PDF

Protein arginine methyltransferase (PRMT) 5 is the type 2 methyltransferase catalyzing symmetric dimethylation of arginine. PRMT5 inhibition or deletion in CD4 Th cells reduces TCR engagement-induced IL-2 production and Th cell expansion and confers protection against experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. However, the mechanisms by which PRMT5 modulates Th cell proliferation are still not completely understood, and neither are the methylation targets in T cells.

View Article and Find Full Text PDF

AKT-phosphorylated IWS1 promotes Histone H3K36 trimethylation and alternative RNA splicing of target genes, including the U2AF65 splicing factor-encoding U2AF2. The predominant U2AF2 transcript, upon IWS1 phosphorylation block, lacks the RS-domain-encoding exon 2, and encodes a protein which fails to bind Prp19. Here we show that although both U2AF65 isoforms bind intronless mRNAs containing cytoplasmic accumulation region elements (CAR-E), only the RS domain-containing U2AF65 recruits Prp19 and promotes their nuclear export.

View Article and Find Full Text PDF

Background: The cancer stem cell (CSC) hypothesis of tumor genesis suggests that unlike most cancer cells within tumor CSC resist chemotherapy and can regenerate various cell types in tumor thereby causing relapse. Hence drugs that selectively target CSC may offer great promise for cancer therapy especially when combined with chemotherapy. Current treatment options for colorectal cancer (CRC) and other gastrointestinal (GI) tumors rely on combination of surgical resection, cytotoxic and targeted drugs.

View Article and Find Full Text PDF

AKT-phosphorylated IWS1 regulates alternative RNA splicing via a pathway that is active in lung cancer. RNA-seq studies in lung adenocarcinoma cells lacking phosphorylated IWS1, identified a exon 2-deficient U2AF2 splice variant. Here, we show that exon 2 inclusion in the U2AF2 mRNA is a cell cycle-dependent process that is regulated by LEDGF/SRSF1 splicing complexes, whose assembly is controlled by the IWS1 phosphorylation-dependent deposition of histone H3K36me3 marks in the body of target genes.

View Article and Find Full Text PDF

Despite the unprecedented growth in our understanding of cell biology, it still remains challenging to connect it to experimental data obtained with cells and tissues' physiopathological status under precise circumstances. This knowledge gap often results in difficulties in designing validation experiments, which are usually labor-intensive, expensive to perform, and hard to interpret. Here we propose PHENSIM, a computational tool using a systems biology approach to simulate how cell phenotypes are affected by the activation/inhibition of one or multiple biomolecules, and it does so by exploiting signaling pathways.

View Article and Find Full Text PDF

Background: RNA-Seq is a well-established technology extensively used for transcriptome profiling, allowing the analysis of coding and non-coding RNA molecules. However, this technology produces a vast amount of data requiring sophisticated computational approaches for their analysis than other traditional technologies such as Real-Time PCR or microarrays, strongly discouraging non-expert users. For this reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data.

View Article and Find Full Text PDF

Akt activation up-regulates the intracellular levels of reactive oxygen species (ROS) by inhibiting ROS scavenging. Of the Akt isoforms, Akt3 has also been shown to up-regulate ROS by promoting mitochondrial biogenesis. Here, we employ a set of isogenic cell lines that express different Akt isoforms, to show that the most robust inducer of ROS is Akt3.

View Article and Find Full Text PDF

The Akt family is comprised of three unique homologous proteins with isoform-specific effects, but isoform-specific in vivo data are limited in follicular thyroid cancer (FTC), a PI3 kinase-driven tumor. Prior studies demonstrated that PI3K/Akt signaling is important in thyroid hormone receptor β knock-in (PV) mice that develop metastatic thyroid cancer that most closely resembles FTC. To determine the roles of Akt isoforms in this model we crossed Akt1, Akt2, and Akt3 mice with PV mice.

View Article and Find Full Text PDF

Background: Observational studies have demonstrated association of metformin with reduced cancer incidence and mortality in multiple cancer types, including gastrointestinal (GI) malignancies. Anti-neoplastic effects of metformin are believed through many mechanisms including activation of AMP-activated protein kinase, which controls mammalian target of rapamycin (mTOR) growth regulatory pathway.

Methods: In a pilot, delayed-start randomized study, non-diabetic patients with GI cancers were randomized to 2 arms, Stage 1: concurrent metformin (500mg twice daily) plus chemotherapy vs.

View Article and Find Full Text PDF