Publications by authors named "Philip N Borer"

The highly conserved nucleocapsid protein domain in HIV-1 recognizes and binds SL3 in genomic RNA. In this work, we used the structure of the NCp7-SL3 RNA complex to guide the construction of 16 NCp7 mutants to probe the RNA binding surface of the protein [De Guzman, R. N.

View Article and Find Full Text PDF

One primary goal in nanobiotechnology is designing new methodologies for molecular biomedical diagnosis at stages much earlier than currently possible and without use of expensive reagents and sophisticated equipment. In this work, we show the proof of principle for single-molecule detection of the nucleocapsid protein 7 (NCp7), a protein biomarker of the HIV-1 virus, using synthetic nanopores and the resistive-pulse technique. The biosensing mechanism relied upon specific interactions between NCp7 and aptamers of stem-loop 3 (SL3) in the packaging domain of the retroviral RNA genome.

View Article and Find Full Text PDF

One intimidating challenge in protein nanopore-based technologies is designing robust protein scaffolds that remain functionally intact under a broad spectrum of detection conditions. Here, we show that an extensively engineered bacterial ferric hydroxamate uptake component A (FhuA), a β-barrel membrane protein, functions as a robust protein tunnel for the sampling of biomolecular events. The key implementation in this work was the coupling of direct genetic engineering with a refolding approach to produce an unusually stable protein nanopore.

View Article and Find Full Text PDF

Background: Aptamers are oligonucleotides that bind proteins and other targets with high affinity and selectivity. Twenty years ago elements of natural selection were adapted to in vitro selection in order to distinguish aptamers among randomized sequence libraries. The primary bottleneck in traditional aptamer discovery is multiple cycles of in vitro evolution.

View Article and Find Full Text PDF

The mature nucleocapsid protein of HIV-1, NCp7, and the NC domains in gag precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion.

View Article and Find Full Text PDF

A unimolecular oligonucleotide switch, termed here an AlloSwitch, binds the mature HIV-1 nucleocapsid protein, NCp7. This switch can be used as an indicator for the presence of free NCp7 and NC domains in precursor and fusion proteins. It is thermodynamically stable in two conformations, H and O.

View Article and Find Full Text PDF

The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to monitor drug 13C NMR chemical shifts changes. The binding mode of netropsin to the minor groove of DNA is well-known, and served as a good model for evaluating the relative sensitivity of 13C chemical shifts to hydrogen bonding. Large downfield shifts were observed for four resonances of carbons that neighbor sites which are known to form hydrogen bond interactions with the DNA minor groove.

View Article and Find Full Text PDF

Ultraviolet absorption provides the nearly universal basis for determining concentrations of nucleic acids. Values for the UV extinction coefficients of DNA and RNA rely on the mononucleotide values determined 30-50 years ago. We show that nearly all of the previously published extinction coefficients for the nucleoside-5'-monophosphates are too large, and in error by as much as 7%.

View Article and Find Full Text PDF

The 5'-leader of HIV-1 RNA controls many viral functions. Nucleocapsid (NC) domains of gag-precursor proteins select genomic RNA for packaging by binding several sites in the leader. One is likely to be a stem defect in SL1 that can adopt either a 1 x 3 internal loop, SL1i (including G247, A271, G272, G273) or a 1 x 1 internal loop (G247 x G273) near a two-base bulge (A269-G270).

View Article and Find Full Text PDF

Efficient packaging of genomic RNA into new HIV-1 virus particles requires that nucleocapsid domains of precursor proteins bind the SL3 tetraloop (G317-G-A-G320) from the 5'-untranslated region. This paper presents the affinities of 35 RNA variants of SL3 for the mature 55mer NC protein, as measured by fluorescence quenching of tryptophan-37 in the protein by nucleobases. The 1:1 complexes that form in 0.

View Article and Find Full Text PDF

To design anti-nucleocapsid drugs, it is useful to know the affinities the protein has for its natural substrates under physiological conditions. Dissociation equilibrium constants are reported for seven RNA stem-loops bound to the mature HIV-1 nucleocapsid protein, NCp7. The loops include SL1, SL2, SL3, and SL4 from the major packaging domain of genomic RNA.

View Article and Find Full Text PDF