Publications by authors named "Philip Morefield"

We apply the hydrologic landscape (HL) concept to assess the hydrologic vulnerability of the western United States (U.S.) to projected climate conditions.

View Article and Find Full Text PDF

Recent assessments have found that a warming climate, with associated increases in extreme heat events, could profoundly affect human health. This paper describes a new modeling and analysis framework, built around the Benefits Mapping and Analysis Program-Community Edition (BenMAP), for estimating heat-related mortality as a function of changes in key factors that determine the health impacts of extreme heat. This new framework has the flexibility to integrate these factors within health risk assessments, and to sample across the uncertainties in them, to provide a more comprehensive picture of total health risk from climate-driven increases in extreme heat.

View Article and Find Full Text PDF
Article Synopsis
  • Estimating population exposure to particulate matter (PM2.5) from wildfires is challenging due to limited monitoring data that fails to capture smoke plume variability.
  • Chemical transport models and satellite data can help predict PM2.5 levels, with a study using advanced statistical algorithms to analyze data from the 2008 northern California wildfires.
  • The generalized boosting model (GBM) proved most effective in predicting PM2.5, highlighting the importance of satellite aerosol data, CTM output, and proximity to fire clusters for accurate estimates.
View Article and Find Full Text PDF

Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1-2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming.

View Article and Find Full Text PDF

Although nitrogen (N) deposition is a significant threat to herbaceous plant biodiversity worldwide, it is not a new stressor for many developed regions. Only recently has it become possible to estimate historical impacts nationally for the United States. We used 26 years (1985-2010) of deposition data, with ecosystem-specific functional responses from local field experiments and a national critical loads (CL) database, to generate scenario-based estimates of herbaceous species loss.

View Article and Find Full Text PDF

Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices.

Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices.

View Article and Find Full Text PDF

The diversity and abundance of information available for vulnerability assessments can present a challenge to decision-makers. Here we propose a framework to aggregate and present socioeconomic and environmental data in a visual vulnerability assessment that will help prioritize management options for communities vulnerable to environmental change. Socioeconomic and environmental data are aggregated into distinct categorical indices across three dimensions and arranged in a cube, so that individual communities can be plotted in a three-dimensional space to assess the type and relative magnitude of the communities' vulnerabilities based on their position in the cube.

View Article and Find Full Text PDF

Climate change is anticipated to raise overall temperatures and is likely to increase heat-related human health morbidity and mortality risks. The objective of this work was to develop a proof-of-concept approach for estimating excess heat-related premature deaths in the continental United States resulting from potential changes in future temperature using the BenMAP model. In this approach we adapt the methods and tools that the US Environmental Protection Agency uses to assess air pollution health impacts by incorporating temperature modeling and heat mortality health impact functions.

View Article and Find Full Text PDF

Understanding the impacts of climate change on people and the environment requires an understanding of the dynamics of both climate and land use/land cover changes. A range of future climate scenarios is available for the conterminous United States that have been developed based on widely used international greenhouse gas emissions storylines. Climate scenarios derived from these emissions storylines have not been matched with logically consistent land use/cover maps for the United States.

View Article and Find Full Text PDF