Purpose: To determine whether salvage artificial urinary sphincter (AUS) implantation after prior incontinence surgery achieves outcomes comparable to primary AUS implantation.
Methods: We retrospectively evaluated data of patients undergoing AUS implantation from 2009 to 2014. Functional outcome was objectified by 1-h stress pad test, uroflowmetry, post-void residual urine measurement, clinical examination, and chart review.
Botulinum neurotoxin is a potent inhibitor of acetylcholine secretion and acts by cleaving members of the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor family, which are critical to exocytotic vesicular secretion. However, the potential of botulinum neurotoxin for treating secretory disease is limited both by its neural selectivity and the necessity for direct injection into the relevant target tissue. To circumvent these limitations, a technology platform called targeted secretion inhibitors (TSIs) is being developed.
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) are zinc endopeptidases that block release of the neurotransmitter acetylcholine in neuromuscular synapses through cleavage of soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein receptor (SNARE) proteins, which promote fusion of synaptic vesicles to the plasma membrane. We designed and tested a BoNT-derived targeted secretion inhibitor (TSI) targeting pituitary somatotroph cells to suppress growth hormone (GH) secretion and treat acromegaly. This recombinant protein, called SXN101742, contains a modified GH-releasing hormone (GHRH) domain and the endopeptidase domain of botulinum toxin serotype D (GHRH-LHN/D, where HN/D indicates endopeptidase and translocation domain type D).
View Article and Find Full Text PDFBotulinum neurotoxins (BoNTs) modulate cholinergic nerve terminals to result in neurotransmitter blockade. BoNTs consists of catalytic (LC), translocation (Hn) and cell-binding domains (Hc). The binding function of the Hc domain is essential for BoNTs to bind the neuronal cell membrane, therefore, removal of the Hc domain results in a product that retains the endopeptidase activity of the LC but is non-toxic.
View Article and Find Full Text PDFClostridium botulinum neurotoxins are potently toxic proteins of 150 kDa with specific endopeptidase activity for SNARE proteins involved in vesicle docking and release. Following treatment with trypsin, a fragment of botulinum neurotoxin serotype A that lacks the C-terminal domain responsible for neuronal cell binding, but retains full catalytic activity, can be obtained. Known as the LH(N) fragment, we report the development of a recombinant expression and purification scheme for the isolation of comparable fragments of neurotoxin serotypes B and C.
View Article and Find Full Text PDF