Background: Conventional adeno-associated viral (AAV) vectors, while highly effective in quiescent cells such as hepatocytes in the adult liver, confer less durable transgene expression in proliferating cells owing to episome loss. Sustained therapeutic success is therefore less likely in liver disorders requiring early intervention. We have previously developed a hybrid, dual virion approach, recombinant AAV (rAAV)/piggyBac transposon system capable of achieving stable gene transfer in proliferating hepatocytes at levels many fold above conventional AAV vectors.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) vector gene delivery systems have demonstrated great promise in clinical trials but continue to face durability and dose-related challenges. Unlike rAAV gene therapy, integrating gene addition approaches can provide curative expression in mitotically active cells and pediatric populations. We explored a novel in vivo delivery approach based on an engineered transposase, Sleeping Beauty (SB100X), delivered as an mRNA within a lipid nanoparticle (LNP), in combination with an rAAV-delivered transposable transgene.
View Article and Find Full Text PDFAncestral sequence reconstruction provides a unique platform for investigating the molecular evolution of single gene products and recently has shown success in engineering advanced biological therapeutics. To date, the coevolution of proteins within complexes and protein-protein interactions is mostly investigated in silico via proteomics and/or within single-celled systems. Herein, ancestral sequence reconstruction is used to investigate the molecular evolution of 2 proteins linked not only by stabilizing association in circulation but also by their independent roles within the primary and secondary hemostatic systems of mammals.
View Article and Find Full Text PDFAnti-drug antibodies to coagulation factor VIII (fVIII), often termed inhibitors, present the greatest economical and treatment related obstacle in the management of hemophilia A. Although several genetic and environmental risk factors associated with inhibitor development have been identified, the precise mechanisms responsible for the immune response to exogenous fVIII therapies remain undefined. Clinical trials suggest there is an increased immunogenic potential of recombinant fVIII compared to plasma-derived products.
View Article and Find Full Text PDFBackground: Disruption of protein folding or inter-subunit interactions in the platelet glycoprotein (GP)Ib-IX complex leads to its abnormally low expression in the plasma membrane, the hallmark of Bernard-Soulier syndrome (BSS).
Objective: To discover the molecular mechanism by which GPIbα in the absence of GPIbβ and GPIX subunits is targeted for rapid degradation.
Method: The expression of GPIbα mutants with deletion or replacement of various domains were measured in transiently transfected Chinese hamster ovary cells.
Mol Ther Methods Clin Dev
June 2018
Potency is a key optimization parameter for hemophilia A gene therapy product candidates. Optimization strategies include promoter engineering to increase transcription, codon optimization of mRNA to improve translation, and amino-acid substitution to promote secretion. Herein, we describe both rational and empirical design approaches to the development of a minimally sized, highly potent AAV-fVIII vector that incorporates three unique elements: a liver-directed 146-nt transcription regulatory module, a target-cell-specific codon optimization algorithm, and a high-expression bioengineered fVIII variant.
View Article and Find Full Text PDFOptimization of a protein's pharmaceutical properties is usually carried out by rational design and/or directed evolution. Here we test an alternative approach based on ancestral sequence reconstruction. Using available genomic sequence data on coagulation factor VIII and predictive models of molecular evolution, we engineer protein variants with improved activity, stability, and biosynthesis potential and reduced inhibition by anti-drug antibodies.
View Article and Find Full Text PDFAnimal models of the bleeding disorder, hemophilia A, have been an integral component of the biopharmaceutical development process and have facilitated the development of recombinant coagulation factor VIII (fVIII) products capable of restoring median survival of persons with hemophilia A to that of the general population. However, there remain several limitations to recombinant fVIII as a biotherapeutic, including invasiveness of intravenous infusion, short half-life, immunogenicity, and lack of availability to the majority of the world's population. The recently described ovine model of hemophilia A is the largest and most accurate phenocopy.
View Article and Find Full Text PDFJ Genet Syndr Gene Ther
November 2011