Identifying genetic biomarkers of synthetic lethal drug sensitivity effects provides one approach to the development of targeted cancer therapies. Mutations in ARID1A represent one of the most common molecular alterations in human cancer, but therapeutic approaches that target these defects are not yet clinically available. We demonstrate that defects in ARID1A sensitize tumour cells to clinical inhibitors of the DNA damage checkpoint kinase, ATR, both in vitro and in vivo.
View Article and Find Full Text PDFATR and CHK1 maintain cancer cell survival under replication stress and inhibitors of both kinases are currently undergoing clinical trials. As ATR activity is increased after CHK1 inhibition, we hypothesized that this may indicate an increased reliance on ATR for survival. Indeed, we observe that replication stress induced by the CHK1 inhibitor AZD7762 results in replication catastrophe and apoptosis, when combined with the ATR inhibitor VE-821 specifically in cancer cells.
View Article and Find Full Text PDFBackground: ATR, which signals DNA damage to S/G2 cell cycle checkpoints and for repair, is an attractive target in cancer therapy. ATR inhibitors are being developed and a pharmacodynamic assay is needed to support clinical studies.
Methods: Phosphorylation of ATR targets, Chk1 and H2AX, was evaluated in MCF7 and K562 cells, human volunteer PBMCs and whole blood by Western blot, immunofluorescence microscopy and flow cytometry after DNA damage.
Camptothecin and its derivatives, topotecan and irinotecan, are specific topoisomerase I (Top1) inhibitors and potent anticancer drugs killing cancer cells by producing replication-associated DNA double-strand breaks, and the indenoisoquinoline LMP-400 (indotecan) is a novel Top1 inhibitor in clinical trial. To develop novel drug combinations, we conducted a synthetic lethal siRNA screen using a library that targets nearly 7,000 human genes. Depletion of ATR, the main transducer of replication stress, came as a top candidate gene for camptothecin synthetic lethality.
View Article and Find Full Text PDFPlatinum-based DNA-damaging chemotherapy is standard-of-care for most patients with lung cancer but outcomes remain poor. This has been attributed, in part, to the highly effective repair network known as the DNA-damage response (DDR). ATR kinase is a critical regulator of this pathway, and its inhibition has been shown to sensitize some cancer, but not normal, cells in vitro to DNA damaging agents.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
May 2014
Bloom's syndrome is an autosomal recessive genome-instability disorder associated with a predisposition to cancer, premature aging and developmental abnormalities. It is caused by mutations that inactivate the DNA helicase activity of the BLM protein or nullify protein expression. The BLM helicase has been implicated in the alternative lengthening of telomeres (ALT) pathway, which is essential for the limitless replication of some cancer cells.
View Article and Find Full Text PDFDNA damaging agents such as radiotherapy and gemcitabine are frequently used for the treatment of pancreatic cancer. However, these treatments typically provide only modest benefit. Improving the low survival rate for pancreatic cancer patients therefore remains a major challenge in oncology.
View Article and Find Full Text PDFHere we report a comprehensive biological characterization of a potent and selective small-molecule inhibitor of the DNA damage response (DDR) kinase ATR. We show a profound synthetic lethal interaction between ATR and the ATM-p53 tumor suppressor pathway in cells treated with DNA-damaging agents and establish ATR inhibition as a way to transform the outcome for patients with cancer treated with ionizing radiation or genotoxic drugs.
View Article and Find Full Text PDFDNA-damaging agents are among the most frequently used anticancer drugs. However, they provide only modest benefit in most cancers. This may be attributed to a genome maintenance network, the DNA damage response (DDR), that recognizes and repairs damaged DNA.
View Article and Find Full Text PDFBackground: Checkpoint signaling pathways are of crucial importance for the maintenance of genomic integrity. Within these pathways, the effector kinase Chk1 plays a central role in mediating cell-cycle arrest in response to DNA damage, and it does so by phosphorylating key cell-cycle regulators.
Results: By investigating the subcellular distribution of Chk1 by cell fractionation, we observed that around 20% of it localizes to chromatin during all phases of the cell cycle.
The serine/threonine protein kinase ATM signals to cell cycle and DNA repair components by phosphorylating downstream targets such as p53, CHK2, NBS1, and BRCA1. Mutation of ATM occurs in the human autosomal recessive disorder ataxia-telangiectasia, which is characterized by hypersensitivity to ionizing radiation and a failure of cells to arrest the cell cycle after the induction of DNA double-strand breaks. It has thus been proposed that ATM inhibition would cause cellular radio- and chemosensitization.
View Article and Find Full Text PDFCritical telomere shortening induces senescence in many normal human cell types grown in culture. Recent data have revealed that dysfunctional telomeres can resemble certain forms of DNA damage, and point to a role for DNA damage signaling in the establishment and maintenance of telomere-initiated senescence. Here, we review these new observations and highlight potential avenues of future research.
View Article and Find Full Text PDFChronic lymphocytic leukaemia (CLL) results from the accumulation of apoptosis-resistant clonal B cells that are arrested in G0/G1, and is heterogeneous with respect to clinical outcome. An aggressive form of the disease is identified by an impaired p53 response to ionizing radiation (IR). This is associated with inactivating mutations of either p53 or ATM, a regulator of p53 activated by IR-induced DNA damage.
View Article and Find Full Text PDFMost human somatic cells can undergo only a limited number of population doublings in vitro. This exhaustion of proliferative potential, called senescence, can be triggered when telomeres--the ends of linear chromosomes-cannot fulfil their normal protective functions. Here we show that senescent human fibroblasts display molecular markers characteristic of cells bearing DNA double-strand breaks.
View Article and Find Full Text PDF