Legacy phosphorus (P) is a concept advanced by Dr. Andrew Sharpley and colleagues that was originally applied to the persistence of anthropogenic signatures in watersheds, and it has since been adopted in a diversity of settings to help guide the science and management of P. Following Sharpley's example to develop consensus-based science, we considered contrasting perspectives on legacy P and defined legacy P as those stores within the environment that arise from historic human activity excluding "natural" or "background" geogenic sources.
View Article and Find Full Text PDFCurr Opin Biotechnol
October 2024
Phosphorus (P) enrichment of water impairs its quality by stimulating algal growth and eutrophication, affecting an estimated 1.7 billion people. Remediation costs are substantial, estimated at $1 billion annually in Europe and $2.
View Article and Find Full Text PDFA defining feature of the Anthropocene is the distortion of the biosphere phosphorus (P) cycle. A relatively sudden acceleration of input fluxes without a concomitant increase in output fluxes has led to net accumulation of P in the terrestrial-aquatic continuum. Over the past century, P has been mined from geological deposits to produce crop fertilizers.
View Article and Find Full Text PDFEnviron Microbiol
March 2024
Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR.
View Article and Find Full Text PDFUnlabelled: Soil nutrient pools in the dry low Arctic are likely to be released under climatic change and this bioavailability has the potential to increase both terrestrial and aquatic productions. As well as the direct effect of warming, external disturbances such as nutrient deposition and grazing can also drive ecosystem change. This study in the low Arctic Kangerlussuaq area of southwest Greenland compared soil nutrient pools in terms of both topographic position on a catena and by soil depth in two small catchments with contrasting muskox abundance.
View Article and Find Full Text PDFPhosphorus (P) is an essential element to all living beings but also a finite resource. P-related problems center around broken P cycles from local to global scales. This paper presents outcomes from the 9th International Phosphorus Workshop (IPW9) held 2019 on how to move towards a sustainable P management.
View Article and Find Full Text PDFPlants release carbon-based exudates from their roots into the rhizosphere to increase phosphorus (P) supply to the soil solution. However, if more P than required is brought into solution, additional P could be available for leaching from riparian soils. To investigate this further, soil columns containing a riparian arable and buffer strip soil, which differed in organic matter contents, were sown with three common agricultural and riparian grass species.
View Article and Find Full Text PDFThe buffering of phosphorus concentrations in soil solution by the soil-solid phase is an important process for providing plant root access to nutrients. Accordingly, the size of labile solid phase-bound phosphorus pool and the rate at which it can resupply phosphorous into the dissolved phase can be important variables in determining when the plant availability of the nutrient may be limited. The phosphorus labile pool (P) and its desorption kinetics were simultaneously evaluated in 10 agricultural UK soils using the diffusive gradients in thin-films (DGT) technique.
View Article and Find Full Text PDFFreshwater ecosystems sustain human society through the provision of a range of services. However, the status of these ecosystems is threatened by a multitude of pressures, including point sources of wastewater. Future treatment of wastewater will increasingly require new forms of decentralised infrastructure.
View Article and Find Full Text PDFThe use of grasses as cover crops in the off-season of cash crops under no-till has been largely adopted. However, soil phosphorus (P) uptake was previously shown to be reduced when ruzigrass is introduced in the rotation, affecting the viability and sustainability of this cropping system. The objective of this study was to assess the effect of ruzigrass on soil P availability and desorption kinetics under different P fertilizer application rates.
View Article and Find Full Text PDFPhosphorus is an essential part of the world food web and a non-substitutable nutrient in all biological systems. Losses of phosphorus occur along the food-supply chain and cause environmental degradation and eutrophication. A key global challenge is to meet rising worldwide food demand while protecting water and environmental quality, and seeking to manage uncertainty around potential future phosphorus price or supply shocks.
View Article and Find Full Text PDFCitrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation.
View Article and Find Full Text PDFAims: Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.
Methods: Four barley cultivars ( L.
Background: Phosphorus (P) fertilizer is usually applied in excess of plant requirement and accumulates in soils due to its strong adsorption, rapid precipitation and immobilisation into unavailable forms including organic moieties. As soils are complex and diverse chemical, biochemical and biological systems, strategies to access recalcitrant soil P are often inefficient, case specific and inconsistently applicable in different soils. Finding a near-universal or at least widely applicable solution to the inefficiency in agricultural P use by plants is an important unsolved problem that has been under investigation for more than half a century.
View Article and Find Full Text PDFIn order to improve the efficiency of nutrient use whilst also meeting projected changes in the demand for food within China, new nutrient management frameworks comprised of policy, practice and the means of delivering change are required. These frameworks should be underpinned by systemic analyses of the stocks and flows of nutrients within agricultural production. In this paper, a 30-year time series of the stocks and flows of nitrogen (N), phosphorus (P) and potassium (K) are reported for Huantai county, an exemplar area of intensive agricultural production in the North China Plain.
View Article and Find Full Text PDFPhosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H.
View Article and Find Full Text PDFSoil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases.
View Article and Find Full Text PDFWe have used an integrated approach to study the mobility of inorganic phosphorus (P) from soil solid phase as well as the microbial biomass P and respiration at increasing doses of citric and oxalic acid in two different soils with contrasting agronomic P status. Citric or oxalic acids significantly increased soil solution P concentrations for doses over 2 mmol kg. However, low organic acid doses (<2 mmol kg) were associated with a steep increase in microbial biomass P, which was not seen for higher doses.
View Article and Find Full Text PDFThe mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.
View Article and Find Full Text PDFEnviron Sci Process Impacts
July 2014
Cattle in-stream activity is potentially an important contributor to water pollution from agriculture. Here we present research on the physical movements of cattle within a stream on suspended solid concentrations (SSC). This study used camera surveillance to monitor the in-stream activity of dairy cattle in an unfenced reach over a four-month period.
View Article and Find Full Text PDFEmpirical monitoring studies of catchment-scale Escherichia coli burden to land from agriculture are scarce. This is not surprising given the complexity associated with the temporal and spatial heterogeneity in the excretion of livestock faecal deposits and variability in microbial content of faeces. However, such information is needed to appreciate better how land management and landscape features impact on water quality draining agricultural landscapes.
View Article and Find Full Text PDFDiffuse pollution remains a major threat to surface waters due to eutrophication caused by phosphorus (P) transfer from agricultural land. Vegetated buffer strips (VBSs) are increasingly used to mitigate diffuse P losses from agricultural land, having been shown to reduce particulate P transfer. However, retention of dissolved P (DP) has been lower, and in some cases VBSs have increased delivery to surface waters.
View Article and Find Full Text PDF