Publications by authors named "Philip M Gaughwin"

Background: Recent studies in Huntington's disease (HD) mouse models and patients suggest that hippocampal neurons and their cholinergic afferents are involved in the cognitive deficits seen in the disease. Nerve growth factor (NGF) is an essential regulator of cholinergic neuronal survival and neurotransmission.

Objective: We asked whether NGF might be involved in HD and if intra-cerebroventricular infusion of NGF can rescue hippocampal cholinergic neuronal markers, restore neurogenesis, and improve the spatial working memory in R6/1 mouse model of HD.

View Article and Find Full Text PDF

Huntington's disease (HD) is a devastating, neurodegenerative condition, which lacks effective treatment. Normal Huntingtin (HTT) and mutant Huntingtin (mHTT) are expressed in multiple tissues and can alter transcription of microRNAs (miRs). Importantly, miRs are present in a bio-stable form in human peripheral blood plasma and have recently been shown to be useful biomarkers in other diseases.

View Article and Find Full Text PDF

In the neurons of Huntington's disease (HD) patients, gene regulatory networks are disrupted by aberrant nuclear localization of the master transcriptional repressor REST. Emerging evidence suggests that, in addition to protein-coding genes, noncoding RNAs (ncRNAs) may also contribute to neurodegenerative processes. To discover ncRNAs that are involved in HD, we screened genome-wide data for novel, noncoding targets of REST.

View Article and Find Full Text PDF

The genetic networks controlling stem cell identity are the focus of intense interest, due to their obvious therapeutic potential as well as exceptional relevance to models of early development. Genome-wide mapping of transcriptional networks in mouse embryonic stem cells (mESCs) reveals that many endogenous noncoding RNA molecules, including long noncoding RNAs (lncRNAs), may play a role in controlling the pluripotent state. We performed a genome-wide screen that combined full-length mESC transcriptome genomic mapping data with chromatin immunoprecipitation genomic location maps of the key mESC transcription factors Oct4 and Nanog.

View Article and Find Full Text PDF

Hundreds of microRNAs (miRNAs) are expressed in mammalian cells, where they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. Functional studies to date have demonstrated that several of these miRNAs are important during development. However, the role of miRNAs in the regulation of stem cell growth and differentiation is not well understood.

View Article and Find Full Text PDF