Publications by authors named "Philip Leopold"

Gene therapy to treat hereditary disorders conventionally delivers the normal allele to compensate for loss-of-function mutations. More effective gene therapy may be achieved using a gain-of-function variant. We tested the hypothesis that AAVrh.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied gene expression variability in response to adeno-associated vectors (AAV) to see if certain genetic variants affect gene therapy effectiveness.
  • They analyzed 69,442 whole genome sequences from different populations and identified 5,564 potentially harmful mutations in 62 relevant genes, with 27 common variants.
  • The findings suggest that genetic differences among individuals can impact AAV therapy outcomes, indicating a need for genetic screening in future clinical trials.
View Article and Find Full Text PDF

Background: Electronic cigarettes are increasing in popularity, but there is only little information on their biologic effects on the oral epithelium, the initial site exposed to electronic cigarette smoke.

Methods: We assessed the oral epithelium response to electronic cigarettes by comparing the histology and RNA transcriptome (mRNA and miRNA) of healthy electronic cigarette vapers to nonsmokers. mRNA was assessed based on: (1) genome-wide; (2) genes previously identified as dysregulated in the oral epithelium of electronic cigarette vapers versus nonsmokers; (3) immune and inflammatory-related genes previously identified as dysregulated in the nasal epithelium of electronic cigarette vapers compared to nonsmokers; (4) genes previously identified as dysregulated in the small airway epithelium of nonsmokers following an acute exposure to electronic cigarette; and (5) genes related to the initial steps of COVID-19 infection.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of club cells, a type of airway epithelial cell, in lung defense, suggesting there are different subpopulations with specific functions.
  • Researchers used single-cell RNA sequencing to identify three distinct types of club cells: progenitor, proliferating, and effector, each with unique characteristics and roles within lung tissue.
  • The findings indicate that smoking negatively impacts the differentiation and function of these club cell subpopulations, leading to fewer effector cells and more mucus-producing cells, which may contribute to lung health issues in smokers.
View Article and Find Full Text PDF
Article Synopsis
  • - LPA, produced by enzymes like autotaxin, activates specific receptors that promote pro-fibrotic signaling in the lungs of patients with idiopathic pulmonary fibrosis, leading to changes in basal cells of small airway epithelium.
  • - Experiments showed that treating these basal cells with LPA resulted in significant signaling activity that increased the production of key proteins associated with tissue growth and fibrosis, such as CTGF and PDGFB.
  • - The medium from LPA-treated basal cells stimulated the proliferation of normal human lung fibroblasts and raised their expression of collagen and other proteins, highlighting a interaction that may drive lung tissue remodeling in fibrosis.
View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic fibrotic lung disease with an irreversible decline of lung function. "Bronchiolization", characterized by ectopic appearance of airway epithelial cells in the alveolar regions, is one of the characteristic features in the IPF lung. Based on the knowledge that club cells are the major epithelial secretory cells in human small airways, and their major secretory product uteroglobin (SCGB1A1) is significantly increased in both serum and epithelial lining fluid of IPF lung, we hypothesize that human airway club cells contribute to the pathogenesis of IPF.

View Article and Find Full Text PDF

Background: The human small airway epithelium (SAE) plays a central role in the early events in the pathogenesis of most inherited and acquired lung disorders. Little is known about the molecular phenotypes of the specific cell populations comprising the SAE in humans, and the contribution of SAE specific cell populations to the risk for lung diseases.

Methods: Drop-seq single-cell RNA-sequencing was used to characterize the transcriptome of single cells from human SAE of nonsmokers and smokers by bronchoscopic brushing.

View Article and Find Full Text PDF

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease (COVID-19), a predominantly respiratory illness. The first step in SARS-CoV-2 infection is binding of the virus to (angiotensin-converting enzyme 2) on the airway epithelium. The objective was to gain insight into the expression of in the human airway epithelium.

View Article and Find Full Text PDF
Article Synopsis
  • AAV vectors are used to target liver cells for gene therapy, especially in treating genetic liver disorders, but their effectiveness across different liver cell types is not well understood.
  • Researchers conducted single-cell RNA sequencing on mouse liver cells after administering an AAV vector to identify how well it targets specific hepatocyte types and the overall impact on gene expression.
  • The study found that the AAV vector primarily targets one type of hepatocyte (Hep1) and alters gene expression patterns across all liver cell types, affecting several biological pathways related to liver function.
View Article and Find Full Text PDF

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disorder caused by repetitive trauma to the central nervous system (CNS) suffered by soldiers, contact sport athletes, and civilians following accident-related trauma. CTE is a CNS tauopathy, with trauma-induced inflammation leading to accumulation of hyperphosphorylated forms of the microtubule-binding protein Tau (pTau), resulting in neurofibrillary tangles and progressive loss of neurons. At present, there are no therapies to treat CTE.

View Article and Find Full Text PDF

Background: The pathology of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and most lung cancers involves the small airway epithelium (SAE), the single continuous layer of cells lining the airways ≥ 6th generations. The basal cells (BC) are the stem/progenitor cells of the SAE, responsible for the differentiation into intermediate cells and ciliated, club and mucous cells. To facilitate the study of the biology of the human SAE in health and disease, we immortalized and characterized a normal human SAE basal cell line.

View Article and Find Full Text PDF

Background: KRAS is a GTPase that activates pathways involved in cell growth, differentiation and survival. In normal cells, KRAS-activity is tightly controlled, but with specific mutations, the KRAS protein is persistently activated, giving cells a growth advantage resulting in cancer. While a great deal of attention has been focused on the role of mutated KRAS as a common driver mutation for lung adenocarcinoma, little is known about the role of KRAS in regulating normal human airway differentiation.

View Article and Find Full Text PDF

Rationale: Little is known about human club cells, dome-shaped cells with dense cytoplasmic granules and microvilli that represent the major secretory cells of the human small airways (at least sixth-generation bronchi).

Objectives: To define the ontogeny and biology of the human small airway epithelium club cell.

Methods: The small airway epithelium was sampled from the normal human lung by bronchoscopy and brushing.

View Article and Find Full Text PDF

Due to high levels of expression in aggressive tumors, high mobility group AT-hook 1 (HMGA1) has recently attracted attention as a potential anti-tumor target. However, HMGA1 is also expressed in normal somatic progenitor cells, raising the question: how might systemic anti-HMGA1 therapies affect the structure and function of normal tissue differentiation? In the present study, RNA sequencing data demonstrated HMGA1 is highly expressed in human airway basal stem/progenitor cells (BC), but decreases with BC differentiation in air-liquid interface cultures (ALI). BC collected from nonsmokers, healthy smokers, and smokers with chronic obstructive pulmonary disease (COPD) displayed a range of HMGA1 expression levels.

View Article and Find Full Text PDF

Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder occurring in 1:10,000 to 1:20,000 live births. In >95% of the cases, CAH results from mutations in the CYP21A2 gene, encoding the adrenal steroid enzyme 21-hydroxylase (21OH). Cardinal phenotypic features of CAH include genital ambiguity and sexual precocity, and in severe cases, neonatal salt loss and death.

View Article and Find Full Text PDF

Cationic lipids are promising non-viral vectors for the cellular delivery of nucleic acids. Important considerations for the development of new delivery vectors are enhanced uptake efficiency, low toxicity and traceability. Traceable gene transfer systems however typically require the inclusion of a labeled excipient, and highly sensitive imaging instrumentation to detect the presence of the label.

View Article and Find Full Text PDF

With the assistance of an ink-jet printer, solvent (the "ink") can be controllably and reproducibly printed onto electrospun nanofiber meshes (the "paper") to generate various micropatterns and subsequently guide distinct cellular organization and phenotype expression. In combination with the nanofiber-assisted layer-by-layer cell assembly, the patterned electrospun meshes will define an instructive microenvironment for guided tissue formation.

View Article and Find Full Text PDF

Cationic glycol phospholipids were synthesized introducing chromophoric, rigid polyenoic C20:5 and C30:9 chains next to saturated flexible alkyl chains of variable lengths C6-20:0. Surface properties and liposome formation of the amphiphilic compounds were determined, the properties of liposome/DNA complexes (lipoplexes) were established using three formulations (no co-lipid, DOPE as a co-lipid, or cholesterol as a co-lipid), and the microstructure of the best transfecting compounds inspected using small angle X-ray diffraction to explore details of the partially ordered structures of the systems that constitute the series. Transfection and cytotoxicity of the lipoplexes were evaluated by DNA delivery to Chinese hamster ovary (CHO-K1) cells using the cationic glycerol phospholipid 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) as a reference compound.

View Article and Find Full Text PDF

The synthesis and self-assembling properties of a model compound in a new class of cationic phospholipids with a highly unsaturated conjugated fatty acid are described. In addition, the potential of this new lipid as a nucleic acid carrier was evaluated through lipoplex formulations employing 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid with and without the polycationic peptide protamine, together with a plasmid DNA (pDNA). Lipoplexes composed of this novel unsaturated lipid exhibited pDNA binding and protection from DNase I degradation when formulated with protamine.

View Article and Find Full Text PDF

Wound healing and cancer metastasis share a common starting point, namely, a change in the phenotype of some cells from stationary to motile. The term, epithelial-to-mesenchymal transition (EMT) describes the changes in molecular biology and cellular physiology that allow a cell to transition from a sedentary cell to a motile cell, a process that is relevant not only for cancer and regeneration, but also for normal development of multicellular organisms. The present review compares the similarities and differences in cellular response at the molecular level as tumor cells enter EMT or as keratinocytes begin the process of re-epithelialization of a wound.

View Article and Find Full Text PDF

The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls.

View Article and Find Full Text PDF

Background: Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting that cilia length must exceed the 6-7 microm airway surface fluid depth to generate force in the mucus layer, we hypothesized that cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers.

Methodology/principal Findings: Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples were brushed from human airway epithelium via fiberoptic bronchoscopy.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is essential for organogenesis and is triggered during carcinoma progression to an invasive state. Transforming growth factor-beta (TGF-beta) cooperates with signalling pathways, such as Ras and Wnt, to induce EMT, but the molecular mechanisms are not clear. Here, we report that SMAD3 and SMAD4 interact and form a complex with SNAIL1, a transcriptional repressor and promoter of EMT.

View Article and Find Full Text PDF

In general, virus infections of the brain are rather rare in the immune competent host. However, neurotropic viruses have developed mechanisms to exploit weaknesses in immunological defense mechanisms that eventually allow them to reach and infect CNS neurons. Once in the CNS, these viruses can induce significant neuronal dysfunction and degeneration of specific neuronal populations, sometimes leading to devastating, life-threatening consequences for the host.

View Article and Find Full Text PDF