Flooded rice soils produce elevated concentrations of soluble manganous manganese (Mn(2+)) that could be potentially toxic to subsequent crops. To provide insight into how soil pore Mn(2+) changes its concentration in a rice and post rice drying soil, we used an artificial microcosm system to follow Mn(2+) concentrations in two different soil types (red sodosol and grey vertosol) and under two irrigation regimes (flooded and saturated). Soil pore water was collected from four different depths of soil (2.
View Article and Find Full Text PDFBackground: Rhizo-lysimeters offer unique advantages for the study of plants and their interactions with soils. In this paper, an existing facility at Charles Sturt University in Wagga Wagga Australia is described in detail and its potential to conduct both ecophysiological and ecohydrological research in the study of root interactions of agricultural crops and pastures is quantitatively assessed. This is of significance to future crop research efforts in southern Australia, in light of recent significant long-term drought events, as well as potential impacts of climate change as predicted for the region.
View Article and Find Full Text PDF