Background: Rhodiola rosea extract is purported to improve physical performance and support resilience to stress. Salidroside is considered to be one of the main constituents responsible for the ergogenic actions of R. rosea.
View Article and Find Full Text PDFSeveral studies utilizing , which contains a complex mixture of phytochemicals, reported some positive drug-drug interaction (DDI) findings based on in vitro CYP450's enzyme inhibition, MAO-A and MAO-B inhibition, and preclinical pharmacokinetic studies in either rats or rabbits. However, variation in and multiplicity of constituents present in products is a cause for concern for accurately evaluating drug-drug interaction (DDI) risk. In this report, we examined the effects of bioengineered, nature-identical salidroside on the inhibition potential of salidroside on CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 utilizing human liver microsomes, the induction potential of salidroside on CYP1A2, CYP2B6 and CYP3A4 in cryopreserved human hepatocytes, the inhibitory potential of salidroside against recombinant human MAO-A and MAO-B, and the OATP human uptake transport inhibitory potential of salidroside using transfected HEK293-OATP1B1 and OATP1B3 cells.
View Article and Find Full Text PDFBioactive phytochemicals such as salidroside have been studied to understand the beneficial effects of , an herbaceous plant used in traditional medicine to increase energy and treat a variety of health issues. However, Rhodiola plants are often slow-growing, and many are endangered in their native habitats. Thus, there is a need for safe, alternative supplies of key phytochemicals from Rhodiola.
View Article and Find Full Text PDFQuinazolinone-based anticancer agents were designed, decorated with functional groups from a 2-methoxyestradiol-based microtubule disruptor series, incorporating the aryl sulfamate motif of steroid sulfatase (STS) inhibitors. The steroidal AB-ring system was mimicked, favoring conformations with an N-2 substituent occupying D-ring space. Evaluation against breast and prostate tumor cell lines identified 7b with DU-145 antiproliferative activity (GI 300 nM).
View Article and Find Full Text PDFThe syntheses and antiproliferative activities of novel substituted tetrahydroisoquinoline derivatives and their sulfamates are discussed. Biasing of conformational populations through substitution on the tetrahydroisoquinoline core at C1 and C3 has a profound effect on the antiproliferative activity against various cancer cell lines. The C3 methyl-substituted sulfamate (±)-7-methoxy-2-(3-methoxybenzyl)-3-methyl-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (6 b), for example, was found to be ∼10-fold more potent than the corresponding non-methylated compound 7-methoxy-2-(3-methoxybenzyl)-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline (4 b) against DU-145 prostate cancer cells (GI50 values: 220 nM and 2.
View Article and Find Full Text PDFDespite paclitxael's clinical success, treating hormone-refractory breast cancer remains challenging. Paclitaxel has a poor pharmacological profile, characterized by a low therapeutic index (TIX) caused by severe dose limiting toxicities, such as neutropenia and peripheral neuropathy. Consequently, new drugs are urgently required.
View Article and Find Full Text PDFA structure-activity relationship (SAR) translation strategy was used for the discovery of tetrahydroisoquinoline (THIQ)-based steroidomimetic and chimeric microtubule disruptors based upon a steroidal starting point. A steroid A,B-ring-mimicking THIQ core was connected to methoxyaryl D-ring ring mimics through methylene, carbonyl and sulfonyl linkers to afford a number of steroidomimetic hits (e.g.
View Article and Find Full Text PDFCDC25 phosphatases are key actors in cyclin-dependent kinases activation whose role is essential at various stages of the cell cycle. CDC25 expression is upregulated in a number of human cancers. CDC25 phosphatases are therefore thought to represent promising novel targets in cancer therapy.
View Article and Find Full Text PDFTubulin is a validated target for antitumor drugs. However, the effectiveness of these microtubule-interacting agents is limited by the fact that they are substrates for drug efflux pumps (P-glycoprotein) and/or by the acquisition of point mutations in tubulin residues important for drug-tubulin binding. To bypass these resistance systems, we have identified and characterized a novel synthetic imidazole derivative IRC-083927, which inhibits the tubulin polymerization by a binding to the colchicine site.
View Article and Find Full Text PDFBreast cancer is the leading cause of cancer deaths among women worldwide. The theory of targeting both cancer cells directly and their blood supply has significant therapeutic potential. However, to date, there are few clinically successful single agents that meet these criteria.
View Article and Find Full Text PDFEstradiol-3,17-O,O-bis-sulfamates inhibit steroid sulfatase (STS), carbonic anhydrase (CA), and, when substituted at C-2, cancer cell proliferation and angiogenesis. C-2 Substitution and 17-sulfamate replacement of the estradiol-3,17-O,O-bis-sulfamates were explored with efficient and practical syntheses developed. Evaluation against human cancer cell lines revealed the 2-methyl derivative 27 (DU145 GI(50) = 0.
View Article and Find Full Text PDFA large number of hormones and local agonists activating guanine-binding protein-coupled receptors (GPCR) play a major role in cancer progression. Here, we characterize the new imidazo-pyrazine derivative BIM-46174, which acts as a selective inhibitor of heterotrimeric G-protein complex. BIM-46174 prevents the heterotrimeric G-protein signaling linked to several GPCRs mediating (a) cyclic AMP generation (Galphas), (b) calcium release (Galphaq), and (c) cancer cell invasion by Wnt-2 frizzled receptors and high-affinity neurotensin receptors (Galphao/i and Galphaq).
View Article and Find Full Text PDFCell cycle regulators, such as the CDC25 phosphatases, are potential targets for the development of new anticancer drugs. Here we report the identification and the characterization of BN82685, a quinone-based CDC25 inhibitor that is active in vitro and in vivo. BN82685 inhibits recombinant CDC25A, B, and C phosphatases in vitro.
View Article and Find Full Text PDFMost drugs currently used for human therapy interact with proteins, altering their activity to modulate the pathological cell physiology. In contrast, 2-hydroxy-9-cis-octadecenoic acid (Minerval) was designed to modify the lipid organization of the membrane. Its structure was deduced following the guidelines of the mechanism of action previously proposed by us for certain antitumor drugs.
View Article and Find Full Text PDFBN80927 belongs to a novel family of camptothecin analogs, the homocamptothecins, developed on the concept of topoisomerase I (Topo I) inhibition and characterized by a stable seven-membered beta-hydroxylactone ring. Preclinical data reported here show that BN80927 retains Topo I poisoning activity in cell-free assay (DNA relaxation) as well as in living cells, in which in vivo complexes of topoisomerase experiments and quantification of DNA-protein-complexes stabilization, have confirmed the higher potency of BN80927 as compared with the Topo I inhibitor SN38. In addition, BN80927 inhibits Topo II-mediated DNA relaxation in vitro but without cleavable-complex stabilization, thus indicating catalytic inhibition.
View Article and Find Full Text PDFCDC25 dual-specificity phosphatases are essential regulators that dephosphorylate and activate cyclin-dependent kinase/cyclin complexes at key transitions of the cell cycle. CDC25 activity is currently considered to be an interesting target for the development of new antiproliferative agents. Here we report the identification of a new CDC25 inhibitor and the characterization of its effects at the molecular and cellular levels, and in animal models.
View Article and Find Full Text PDFBiochem Pharmacol
February 2003
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinomas (NPC) are much more sensitive to chemotherapy than other head and neck carcinomas. Spectacular regressions are frequently observed after induction chemotherapy. However, these favorable responses are difficult to predict and often of short duration.
View Article and Find Full Text PDF