An important negative regulator of factor VIIIa (FVIIIa) cofactor activity is A2 subunit dissociation. FVIII molecules with stabilized activity have been generated by elimination of charged residues at the A1-A2 and A2-A3 interfaces. These molecules exhibited reduced decay rates as part of the enzymatic factor Xa generation complex and retained their activities under thermal and chemical denaturing conditions.
View Article and Find Full Text PDFProteolytic cleavage of factor VIII (FVIII) to activated FVIIIa is required for participation in the coagulation cascade. The A2 domain is no longer covalently bound in the resulting activated heterotrimer and is highly unstable. Aspartic acid (D) 519 and glutamic acid (E) 665 at the A1-A2 and A2-A3 domain interfaces were identified as acidic residues in local hydrophobic pockets.
View Article and Find Full Text PDFThe factor VIII (FVIII) crystal structure suggests a possible bonding interaction of His(281) (A1 domain) with Ser(524) (A2 domain), although the resolution of the structure (∼4 Å) does not firmly establish this bonding. To establish that side chains of these residues participate in an interdomain bond, we prepared and examined the functional properties of a residue swap variant (H281S/S524H) where His(281) and Ser(524) residues were exchanged with one another and a disulfide-bridged variant (H281C/S524C) where the two residues were replaced with Cys. The latter variant showed efficient disulfide bonding of the A1 and A2 domains.
View Article and Find Full Text PDFFactor Xa (FXa) proteolytically activates Factor VIII (FVIII) by cleaving P1 residues Arg(372), Arg(740), and Arg(1689). The Arg(372) site represents the rate-limiting step for procofactor activation, whereas cleavage at Arg(740) is a fast step. FXa also catalyzes inactivating cleavages that occur on a slower time scale than the activating ones.
View Article and Find Full Text PDFFactor VIII (FVIII) consists of a heavy chain (A1(a1)A2(a2)B domains) and light chain ((a3)A3C1C2 domains). To gain insights into a role of the FVIII C domains, we eliminated the C1 domain by replacing it with the homologous C2 domain. FVIII stability of the mutant (FVIIIC2C2) as measured by thermal decay at 55 °C of FVIII activity was markedly reduced (~11-fold), whereas the decay rate of FVIIIa due to A2 subunit dissociation was similar to WT FVIIIa.
View Article and Find Full Text PDFFactor (F)VIII consists of a heavy chain [A1(a1)A2(a2)B domains] and a light chain [(a3)A3C1C2 domains]. Several reports have shown significant changes in FVIII stability and/or activity following selected mutations at the A1-A2, A1-A3, A2-A3, and A1-C2 domain interfaces. In this study, the remaining inter-FVIII subunit interfaces (A3-C1 and C1-C2) were examined for their contributions to the stability and activity of FVIII and FVIIIa.
View Article and Find Full Text PDFFactor (F) VIIIa forms a number of contacts with FIXa in assembling the FXase enzyme complex. Surface plasmon resonance was used to examine the interaction between immobilized biotinylated active site-modified FIXa, and FVIII and FVIIIa subunits. The FVIIIa A2 subunit bound FIXa with high affinity (Kd = 3.
View Article and Find Full Text PDFF (Factor) VIIIa binds to phospholipid membranes during formation of the FXase complex. Free thiols from cysteine residues of isolated FVIIIa A1 and A2 subunits and the A3 domain of the A3C1C2 subunit were labelled with PyMPO maleimide {1-(2-maleimidylethyl)-4-[5-(4-methoxyphenyl)-oxazol-2-yl]pyridinium methanesulfonate} or fluorescein (fluorescence donors). Double mutations of the A3 domain (C2000S/T1872C and C2000S/D1828C) were also produced to utilize Cys(1828) and Cys(1872) residues for labelling.
View Article and Find Full Text PDFBasic residues contained in the 39-, 60-, and 70-80-loops of activated protein C (APC) comprise an exosite that contributes to the binding and subsequent proteolytic inactivation of factor (F) VIIIa. Surface plasmon resonance (SPR) showed that WT APC bound to FVIII light chain (LC) and the FVIIIa A1/A3C1C2 dimer with equivalent affinity (Kd = 525 and 546 nM, respectively). These affinity values may reflect binding interactions to the acidic residue-rich a1 and a3 segments adjacent to A1 domain in the A1/A3C1C2 and A3 domain in LC, respectively.
View Article and Find Full Text PDFThe clinical severity in some patients with haemophilia A appears to be unrelated to the levels of factor (F)VIII activity (FVIII:C), but mechanisms are poorly understood. We have investigated a patient with a FVIII gene mutation at Arg1781 to His (R1781H) presenting with a mild phenotype despite FVIII:C of 0.9 IU/dl.
View Article and Find Full Text PDFAlthough factor (F) VIIIa is inactivated by activated protein C (APC) through cleavages in the FVIII heavy chain-derived A1 (Arg(336)) and A2 subunits (Arg(562), the FVIII light chain (LC) contributes to catalysis by binding the enzyme. ELISA-based binding assays showed that FVIII and FVIII LC bound to immobilised active site-modified APC (DEGR-APC) (apparent K(d) ~270 nM and 1.0 μM, respectively).
View Article and Find Full Text PDFThrombin-catalyzed activation of factor VIII (FVIII) occurs through proteolysis at three P1 Arg residues: Arg(372) and Arg(740) in the FVIII heavy chain and Arg(1689) in the FVIII light chain. Cleavage at the latter two sites is relatively fast compared with cleavage at Arg(372), which appears to be rate-limiting. Examination of the P3-P3' residues flanking each P1 site revealed that those sequences at Arg(740) and Arg(1689) are more optimal for thrombin cleavage than at Arg(372), suggesting these sequences may impact reaction rates.
View Article and Find Full Text PDFFactor (F)VIII can be activated to FVIIIa by FXa following cleavages at Arg(372), Arg(740), and Arg(1689). FXa also cleaves FVIII/FVIIIa at Arg(336) and Arg(562) resulting in inactivation of the cofactor. These inactivating cleavages occur on a slower time scale than the activating ones.
View Article and Find Full Text PDFFactor (F) VIII functions as a cofactor in FXase, markedly accelerating the rate of FIXa-catalyzed activation of FX. Earlier work identified a FX-binding site having μM affinity within the COOH-terminal region of the FVIIIa A1 subunit. In the present study, surface plasmon resonance (SPR), ELISA-based binding assays, and chemical cross-linking were employed to assess an interaction between FX and the FVIII light chain (A3C1C2 domains).
View Article and Find Full Text PDFFactor VIII (FVIII) consists of a heavy (A1A2B domains) and light chain (A3C1C2 domains), whereas the contiguous A1A2 domains are separate subunits in the cofactor, FVIIIa. FVIII x-ray structures show close contacts between A1 and C2 domains. To explore the role of this region in FVIII(a) stability, we generated a variant containing a disulfide bond between A1 and C2 domains by mutating Arg-121 and Leu-2302 to Cys (R121C/L2302C) and a second variant with a bulkier hydrophobic group (A108I) to better occupy a cavity between A1 and C2 domains.
View Article and Find Full Text PDFIntroduction: Activated protein C (APC) inactivates factor VIIIa (FVIIIa) through cleavages at Arg336 in the A1 subunit and Arg562 in the A2 subunit. Proteolysis at Arg336 occurs 25-fold faster than at Arg562. Replacing residues flanking Arg336 en bloc with the corresponding residues surrounding Arg562 markedly reduced the rate of cleavage at Arg336, indicating a role for these residues in the catalysis mechanism.
View Article and Find Full Text PDFFactor VIII functions as a cofactor for Factor IXa in a membrane-bound enzyme complex. Membrane binding accelerates the activity of the Factor VIIIa-Factor IXa complex approx. 100000-fold, and the major phospholipid-binding motif of Factor VIII is thought to be on the C2 domain.
View Article and Find Full Text PDFFactor (F) VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains). The activated form of FVIII, FVIIIa, functions as a cofactor for FIXa in catalyzing the membrane-dependent activation of FX. Whereas the FVIII C2 domain is believed to anchor FVIIIa to the phospholipid surface, recent x-ray crystal structures of FVIII suggest that the C1 domain may also contribute to this function.
View Article and Find Full Text PDFFactor VIIIa is comprised of A1, A2, and A3C1C2 subunits. Several lines of evidence have identified the A2 558-loop as interacting with factor IXa. The contributions of individual residues within this region to inter-protein affinity and cofactor activity were assessed following alanine scanning mutagenesis of residues 555-571 that border or are contained within the loop.
View Article and Find Full Text PDFThe procofactor, factor VIII, is activated by thrombin or factor Xa-catalyzed cleavage at three P1 residues: Arg-372, Arg-740, and Arg-1689. The catalytic efficiency for thrombin cleavage at Arg-740 is greater than at either Arg-1689 or Arg-372 and influences reaction rates at these sites. Because cleavage at Arg-372 appears rate-limiting and dependent upon initial cleavage at Arg-740, we investigated whether cleavage at Arg-1689 influences catalysis at this step.
View Article and Find Full Text PDFFactor VIII consists of a heavy chain (A1A2B domains) and light chain (A3C1C2 domains), whereas the contiguous A1A2 domains are separate subunits in the cofactor, factor VIIIa. The intrinsic instability of the cofactor results from weak affinity interactions of the A2 subunit within factor VIIIa. The charged residues Glu272, Asp519, Glu665, and Glu1984 appear buried at the interface of the A2 domain with either the A1 or A3 domain, and thus may impact protein stability.
View Article and Find Full Text PDFFactor VIII is activated by thrombin through proteolysis at Arg740, Arg372, and Arg1689. One region implicated in this exosite-dependent interaction is the factor VIII a2 segment (residues 711-740) separating the A2 and B domains. Residues 717-725 (DYYEDSYED) within this region consist of five acidic residues and three sulfo-Tyr residues, thus representing a high density of negative charge potential.
View Article and Find Full Text PDFFactor VIII circulates as a heterodimer composed of heavy (A1A2B domains) and light (A3C1C2 domains) chains, whereas the contiguous A1A2 domains are separate subunits in the active cofactor, factor VIIIa. Whereas the A1 subunit maintains a stable interaction with the A3C1C2 subunit, the A2 subunit is weakly associated in factor VIIIa and its dissociation accounts for the labile activity of the cofactor. In examining the ceruloplasmin-based factor VIII A domain model, potential hydrogen bonding based upon spatial separations of <2.
View Article and Find Full Text PDFThrombin activates factor VIII by proteolysis at three P1 residues: Arg372, Arg740, and Arg1689. Cleavage at Arg372 and Arg1689 are essential for procofactor activation; however cleavage at Arg740 has not been rigorously studied. To evaluate the role for cleavage at Arg740, we prepared and stably expressed two recombinant B-domainless factor VIII mutants, R740H and R740Q to slow and eliminate, respectively, cleavage at this site.
View Article and Find Full Text PDFActivated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value.
View Article and Find Full Text PDF