Diverse perturbations to endoplasmic reticulum (ER) functions compromise the proper folding and structural maturation of secretory proteins. To study secretory pathway physiology during such "ER stress," we employed an ER-targeted, redox-responsive, green fluorescent protein-eroGFP-that reports on ambient changes in oxidizing potential. Here we find that diverse ER stress regimes cause properly folded, ER-resident eroGFP (and other ER luminal proteins) to "reflux" back to the reducing environment of the cytosol as intact, folded proteins.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) performs a critical role in the oxidative folding of nascent proteins, such that perturbations to ER homeostasis may lead to protein misfolding and subsequent pathological processes. Among the mechanisms for maintaining ER homeostasis is a redox regulation, which is a critical determinant of the fate of ER-stressed cells. Here, we report the establishment of a system for monitoring the ER redox state in mammalian cells.
View Article and Find Full Text PDFReactive oxygen species (ROS) are a family of compounds that can oxidatively damage cellular macromolecules and may influence lifespan. Sirtuins are a conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that regulate lifespan in many model organisms including yeast and mice. Recent work suggests that sirtuins can modulate ROS levels notably during a dietary regimen known as calorie restriction which enhances lifespan for several organisms.
View Article and Find Full Text PDFDisruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumulate, triggering the unfolded protein response (UPR). UPR outputs in turn decrease ER unfolded proteins to close a negative feedback loop. However, because it is infeasible to directly measure the concentration of unfolded proteins in vivo, cells are generically described as experiencing "ER stress" whenever the UPR is active.
View Article and Find Full Text PDF