Publications by authors named "Philip Huxley"

Erythropoietin-producing hepatocellular receptor A2 (EphA2), is a receptor tyrosine kinase involved in cell-cell interactions. It is known to be overexpressed in various tumors and is associated with poor prognosis. EphA2 has been proposed as a target for theranostic applications.

View Article and Find Full Text PDF

Immunoconjugates targeting cell-surface antigens have demonstrated clinical activity to enable regulatory approval in several solid and hematologic malignancies. We hypothesize that a rigorous and comprehensive surfaceome profiling approach to identify osteosarcoma-specific cell-surface antigens can similarly enable development of effective therapeutics in this disease. Herein, we describe an integrated proteomic and transcriptomic surfaceome profiling approach to identify cell-surface proteins that are highly expressed in osteosarcoma but minimally expressed on normal tissues.

View Article and Find Full Text PDF

The EphA2 receptor is found at high levels in tumors and low levels in normal tissue and high EphA2 expression in biopsies is a predictor of poor outcome in patients. Drug discovery groups have therefore sought to develop EphA2-based therapies using small molecule, peptide, and nanoparticle-based approaches (1-3). However, until now only EphA2-targeting antibody-drug conjugates (ADC) have entered clinical development.

View Article and Find Full Text PDF

Bicycles are constrained bicyclic peptides that represent a promising binding modality for use in targeted drug conjugates. A phage display screen against EphA2, a receptor tyrosine kinase highly expressed in a number of solid tumors, identified a number of Bicycle families with low nanomolar affinity. A Bicycle toxin conjugate (BTC) was generated by derivatization of one of these Bicycles with the potent cytotoxin DM1 via a cleavable linker.

View Article and Find Full Text PDF

Costimulatory molecules are important regulators of T cell activation and thus favored targets for therapeutic manipulation of immune responses. One of the key costimulatory receptors is CD80, which binds the T cell ligands, CD28, and CTLA-4. We describe a set of small compounds that bind with high specificity and low nanomolar affinity to CD80.

View Article and Find Full Text PDF