Linearly-fused polyarenes are an important class of compounds with high relevance in materials science. While modifying the shape and size represents a common means to fine-tune their properties, the precise placement of heteroatoms is a strategy that is receiving an increasing deal of attention to overcome the intrinsic limitations of all-carbon structures. Thus, linearly-fused diphosphaarenes recently emerged as a novel family of molecules with striking optoelectronic properties and outstanding stability.
View Article and Find Full Text PDFThe synthesis of π-extended pyrene-based luminescent compounds containing two six-membered phosphacycles has been realized through a two-step synthesis. It involves a Cu(II)-mediated double cyclization of tertiary diphosphane derivatives to afford dicationic molecules with quaternized phosphorus centers. Subsequent transformation of diphosphonium species into the corresponding P-oxide derivatives has been successfully achieved through Pd(0)-assisted cleavage of the P-Ph bonds, which opens a promising way for the functionalization of polyaromatic P-systems.
View Article and Find Full Text PDFPOX and NX halogen bonds in combination with π-stacking interactions lead to the sorting of π-extended R- and S-isomers. Theoretical calculations point to a positive synergistic effect between the π-interactions and the halogen bonds to be the origin of such phenomena. As a result, enantiomeric building blocks form homoleptically connected quadrangular structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2021
π-Extended systems are key components for the development of future organic electronic technologies. While conceiving molecules with improved properties is fundamental for the evolution of materials science, keeping control over the 3D arrangement of molecules represents an ever-expanding challenge. Herein, a synthetic protocol to replace carbon atoms of π-systems by dissymmetric phosphorus atoms is reported; in particular, it allowed for conceiving new fused phosphapyrene derivatives with improved properties.
View Article and Find Full Text PDFDiphosphahexaarenes are highly stable π-extended frameworks containing two six-membered phosphorus heterocycles that have emerged recently. Herein, we present a detailed investigation on the post-functionalization reactions of their phosphorus centers with special emphasis on the selectivity of the processes and the impact of the phosphorus functionalizations into the physicochemical properties. These studies reveal that indeed the phosphorus atoms of the diphosphahexaarenes are readily available to be functionalized with quaternizing and oxidizing agents as well as borane groups without compromising the stability of the system.
View Article and Find Full Text PDFA family of electroluminescent organophosphorus materials for solution-processed organic light-emitting diodes is reported. The investigated systems present a six-membered phosphorus heterocycle fused with a pyrrole or benzopyrrole moiety. The materials exhibit high thermal stability and are soluble in a variety of organic solvents.
View Article and Find Full Text PDFRationally designed cationic phospha-polyaromatic fluorophores were prepared through intramolecular cyclization of the tertiary ortho-(acene)phenylene-phosphines mediated by Cu triflate. As a result of phosphorus quaternization, heterocyclic phosphonium salts 1 c-3 c, derived from naphthalene, phenanthrene, and anthracene cores, exhibited very intense blue to green fluorescence (Φ =0.38-0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2018
Oligoarenes are regarded as subunits of π-extended carbon nanoforms, such as graphene and nanotubes, with exceptional technological importance. Fused arenes can thus provide fundamental insight into the nature of the electronic properties of fused polyaromatic rings and pave the way for the design of extended graphene-like materials. However, large π-extended arenes often show low stability.
View Article and Find Full Text PDFThe impact of integrating six-membered phosphorus heterocycles into a poly(hetero)aromatic materials is investigated. Mechanistic studies reveal the key synthetic requirements to embed the latter phosphorus heterocycles in polyaromatic molecules. DFT calculations indicate that introducing six-membered phosphorus rings into π-extended molecules induces a particular electron distribution over the π-extended system.
View Article and Find Full Text PDF