Publications by authors named "Philip H S Jen"

Background: Hearing loss affects over 1.5 billion individuals worldwide. Their disability and limited access to the coronavirus (COVID-19) pandemic information make them suffer a greater degree than ordinary people.

View Article and Find Full Text PDF

Background: This study compares the mental health and psychological response of students with or without hearing loss during the recurrence of the COVID-19 pandemic in Beijing, the capital of China. It explores the relevant factors affecting mental health and provides evidence-driven strategies to reduce adverse psychological impacts during the COVID-19 pandemic.

Methods: We used the Chinese version of depression, anxiety, and stress scale 21 (DASS-21) to assess the mental health and the impact of events scale-revised (IES-R) to assess the COVID-19 psychological impact.

View Article and Find Full Text PDF

This study examines binaural response properties and sensitivity to interaural level difference of single neurons in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus under earphone stimulation conditions. Contralateral sound stimulation always evoked response from all 306 AC neurons recorded but ipsilateral sound stimulation either excited, inhibited or did not affect their responses. High best frequency (BF) neurons typically had high minimum threshold (MT) and low BF neurons had low MT.

View Article and Find Full Text PDF

The inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within IC, contralateral IC through the commissure of IC and from the auditory cortex (AC). These excitatory and inhibitory inputs from both ascending and descending auditory pathways contribute significantly to auditory response properties and temporal signal processing in IC. The present study examines the contribution of gamma-aminobutyric acid-ergic (GABAergic) inhibition of dorsal nucleus of the lateral lemniscus (DNLL) in influencing the response properties and amplitude sensitivity of contralateral IC neurons using focal electrical stimulation of contralateral DNLL and by the application of bicuculline to the recording site of modulated IC neurons.

View Article and Find Full Text PDF

In the ascending auditory pathway, the central nucleus of the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many bilateral lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these presynaptic excitatory and inhibitory inputs dynamically shape and modulate the auditory response properties of individual IC neurons. For this reason, acoustic response properties vary among individual IC neurons due to different activity pattern of presynaptic inputs.

View Article and Find Full Text PDF

The present study aimed to investigate how bats protect their brain in a hypothermic situation. Formosan leaf-nosed bats (Hipposideros terasensis) were used in this study and treated under three conditions: room temperature (25±1°C), low temperature (4±1°C), and hibernation. The reactive oxygen species (ROS) levels in the blood and apoptosis-related proteins in the brain tissue were assessed and then compared among those bats under three conditions.

View Article and Find Full Text PDF

During hunting, insectivorous bats systematically vary the parameters of emitted pulses and analyze the returning echoes to extract prey features. As such, the duration of the pulse (P) and echo (E), the P-E gap, and the P-E amplitude difference progressively decrease throughout the prey-approach sequence. Our previous studies have shown that most inferior collicular neurons of bats discharge maximally to a best duration, and they have the sharpest echo frequency and amplitude sensitivity when stimulated with P-E pairs with duration the same as the best duration.

View Article and Find Full Text PDF

In the ascending auditory pathway, the inferior colliculus (IC) receives and integrates excitatory and inhibitory inputs from many lower auditory nuclei, intrinsic projections within the IC, contralateral IC through the commissure of the IC and from the auditory cortex. All these connections make the IC a major center for subcortical temporal and spectral integration of auditory information. In this study, we examine bilateral collicular interaction in modulating amplitude-domain signal processing using electrophysiological recording, acoustic and focal electrical stimulation.

View Article and Find Full Text PDF

In nature, communication sounds among animal species including humans are typical complex sounds that occur in sequence and vary with time in several parameters including amplitude, frequency, duration as well as separation, and order of individual sounds. Among these multiple parameters, sound duration is a simple but important one that contributes to the distinct spectral and temporal attributes of individual biological sounds. Likewise, the separation of individual sounds is an important temporal attribute that determines an animal's ability in distinguishing individual sounds.

View Article and Find Full Text PDF

In the ascending auditory pathway, the commissure of the inferior colliculus (IC) interconnects the two ICs and may therefore mediate bilateral collicular interaction during sound processing. In this study, we show that electrically stimulates one IC produces facilitation or suppression of acoustically evoked response of neurons in the other IC. The facilitated IC neurons (14%) are located in bilateral corresponding frequency laminae while the suppressed IC neurons (86%) are widespreadly located in bilateral different frequency laminae.

View Article and Find Full Text PDF

The recovery cycle of auditory neurons is an important neuronal property which underlies a bat's ability in analyzing returning echoes and to determine target distance (i.e., echo ranging).

View Article and Find Full Text PDF

In central auditory signal processing, neural inhibition plays an important role in sharpening the selectivity of auditory neurons. The present study examines the involvement of GABA-mediated inhibition in shaping the frequency selectivity of neurons in the bat inferior colliculus (IC) using forward masking paradigm and bicuculline application. At each study session, we recorded two IC neurons with a pair of electrodes and reciprocally studied whether a sound that served as a probe to elicit response of one neuron might serve as a masker to affect the frequency tuning curve (FTC) of the other paired neuron.

View Article and Find Full Text PDF

A previous study shows that most inferior collicular neurons of the bat discharge maximally to a best duration and these duration-selective neurons have better echo frequency selectivity when the duration of both echo and pulse matches the best duration. In this study, we show that these duration-selective collicular neurons also have the sharpest echo amplitude selectivity when the duration of both echo and pulse matches the best duration. These data indicate that bats can better extract multiple parameters of expected than unexpected echo within the same time window after pulse emission.

View Article and Find Full Text PDF

Neurons in the central nucleus of the inferior colliculus (IC) receive excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes response properties of IC neurons. In this study, we examine the interaction of excitation and inhibition on the responses of two simultaneously recorded IC neurons using a probe and a masker under forward masking paradigm.

View Article and Find Full Text PDF

During hunting, insectivorous bats such as Eptesicus fuscus progressively increase the pulse repetition rate, shorten the pulse duration, and lower the frequency and amplitude of emitted pulses as they search, approach and finally intercept insects or negotiate obstacles. As such, analysis of an echo parameter by the bat is inevitably affected by other co-varying echo parameters. The present study examined the effect of pulse duration on frequency selectivity of neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat.

View Article and Find Full Text PDF

During hunting, duration selectivity and recovery cycle underlie a bat's ability to determine echo duration and target distance (echo ranging). This study shows that the recovery cycle of most duration-selective neurons in the bat central nucleus of the inferior colliculus neurons varies with biologically relevant pulse-echo (P-E) duration and amplitude. As such, neurons with short best duration recover rapidly when stimulated with P-E pairs with short duration and small P-E amplitude difference, whereas neurons with long best duration recover rapidly when stimulated with P-E pairs with long duration and large P-E amplitude difference.

View Article and Find Full Text PDF

During hunting, insectivorous bats progressively decrease the pulse duration, pulse amplitude and pulse-echo gap as they search, approach and finally intercept the prey. Our earlier study shows that echo duration selectivity of most neurons in the central nucleus of the inferior colliculus of Eptesicus fuscus improves with decreasing pulse duration and pulse-echo gap. In this study, we show that most collicular neurons discharged maximally to a best echo duration using three biologically relevant pulse-echo pairs as stimuli.

View Article and Find Full Text PDF

Previous studies show that insectivorous bats prepare their auditory system to analyze expected returning echoes within a time window to extract target features after pulse emission. These studies suggest that the bat's auditory system must be highly sensitive to signal parameters within this time window. In the current study, we show that most neurons in the central nucleus of the inferior colliculus discharge maximally to a best duration and they have better echo frequency selectivity when the duration of both echo and pulse matches the best duration.

View Article and Find Full Text PDF

The big brown bats, Eptesicus fuscus, emit ultrasonic signals and analyze the returning echoes in multi-parametric domains to extract target features. The variation of different pulse parameters during hunting predicts that analysis of an echo parameter by bats is inevitably affected by other co-varying echo parameters. In this study, we presented data to show that the bat inferior collicular (IC) neurons have maximal amplitude sensitivity at the best duration (BD).

View Article and Find Full Text PDF

The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain.

View Article and Find Full Text PDF

Natural auditory environment consists of multiple sound sources that are embedded in ambient strong and weak noise. For effective sound communication and signal analysis, animals must somehow extract biologically relevant signals from the inevitable interference of ambient noise. The present study examined how a weak noise may affect the amplitude sensitivity of neurons in the mouse central nucleus of the inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers.

View Article and Find Full Text PDF

Corticofugal modulation of sub-cortical auditory selectivity has been shown previously in mammals for frequency, amplitude, time, and direction domains in separate studies. As such, these studies do not show if multi-parametric corticofugal modulation can be mediated through the same sub-cortical neuron. Here we specifically studied corticofugal modulation of best frequency (BF), best amplitude (BA), and best azimuth (BAZ) at the same neuron in the inferior colliculus of the big brown bat, Eptesicus fuscus, using focal electrical stimulation in the auditory cortex.

View Article and Find Full Text PDF

In acoustic communication, animals must extract biologically relevant signals that are embedded in noisy environment. The present study examines how weak noise may affect the auditory sensitivity of neurons in the central nucleus of the mouse inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the frequency sensitivity and minimum threshold of IC neurons using a pure tone probe and a weak white noise masker under forward masking paradigm.

View Article and Find Full Text PDF

Insectivorous big brown bats, Eptesicus fuscus, progressively increase the pulse repetition rate (PRR) throughout the course of hunting. While increasing PRR conceivably facilitates bats to extract information about the targets, it also inevitably affects sensitivity of their auditory neurons to pulse parameters. The present study examined the effect of increasing PRR on duration selectivity of this bat's inferior collicular (IC) neurons by comparing their impulse-duration functions determined at different PRRs.

View Article and Find Full Text PDF

Duration selectivity of auditory neurons plays an important role in sound recognition. Previous studies show that GABA-mediated duration selectivity of neurons in the central nucleus of the inferior colliculus (IC) of many animal species behave as band-, short-, long- and all-pass filters to sound duration. The present study examines the organization of duration selectivity of IC neurons of the big brown bat, Eptesicus fuscus, in relation to graded spatial distribution of GABA(A) receptors, which are mostly distributed in the dorsomedial region of the IC but are sparsely distributed in the ventrolateral region.

View Article and Find Full Text PDF