Publications by authors named "Philip H Choi"

Current KRAS (OFF) inhibitors that target inactive GDP-bound KRAS cause responses in less than half of patients and these responses are not durable. A class of RAS (ON) inhibitors that targets active GTP-bound KRAS blocks ERK signaling more potently than the inactive-state inhibitors. Sensitivity to either class of agents is strongly correlated with inhibition of mTORC1 activity.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) is a tetrameric enzyme that contains two active sites per subunit that catalyze two consecutive reactions. A mobile domain with an attached prosthetic biotin links both reactions, an initial biotin carboxylation and the subsequent carboxyl transfer to pyruvate substrate to produce oxaloacetate. Reaction sites are at long distance, and there are several co-factors that play as allosteric regulators.

View Article and Find Full Text PDF

3'3'-Cyclic di-AMP (c-di-AMP) is an important nucleotide second messenger found throughout the bacterial domain of life. c-di-AMP is essential in many bacteria and regulates a diverse array of effector proteins controlling pathogenesis, cell wall homeostasis, osmoregulation, and central metabolism. Despite the ubiquity and importance of c-di-AMP, methods to detect this signaling molecule are limited, particularly at single-cell resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Cyanase breaks down cyanate into ammonia and carbon dioxide, providing an alternative nitrogen source.
  • The cyanase from Thermomyces lanuginosus (Tl-Cyn) exhibits the highest catalytic efficiency known, though its molecular mechanism is not fully understood due to lack of structural data.
  • The study reveals the crystal structure of Tl-Cyn with inhibitors and details its dimeric and decameric forms, leading to insights that could enhance enzyme activity for biotechnological uses like biotransformation and bioremediation.
View Article and Find Full Text PDF

Cyclic di-3',5'-adenosine monophosphate (c-di-AMP) is a broadly conserved bacterial second messenger that has been implicated in a wide range of cellular processes. Our earlier studies showed that c-di-AMP regulates central metabolism in by inhibiting its pyruvate carboxylase (LmPC), a biotin-dependent enzyme with biotin carboxylase (BC) and carboxyltransferase (CT) activities. We report here structural, biochemical, and functional studies on the inhibition of PC (LlPC) by c-di-AMP.

View Article and Find Full Text PDF

Cyclic diadenosine monophosphate (c-di-AMP) is a conserved nucleotide second messenger critical for bacterial growth and resistance to cell wall-active antibiotics. In Listeria monocytogenes, the sole diadenylate cyclase, DacA, is essential in rich, but not synthetic media and ΔdacA mutants are highly sensitive to the β-lactam antibiotic cefuroxime. In this study, loss of function mutations in the oligopeptide importer (oppABCDF) and glycine betaine importer (gbuABC) allowed ΔdacA mutants to grow in rich medium.

View Article and Find Full Text PDF

Pyruvate carboxylase (PC) has important roles in metabolism and is crucial for virulence for some pathogenic bacteria. PC contains biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP) components. It is a single-chain enzyme in eukaryotes and most bacteria, and functions as a 500 kD homo-tetramer.

View Article and Find Full Text PDF

Cellular turgor is of fundamental importance to bacterial growth and survival. Changes in external osmolarity as a consequence of fluctuating environmental conditions and colonization of diverse environments can significantly impact cytoplasmic water content, resulting in cellular lysis or plasmolysis. To ensure maintenance of appropriate cellular turgor, bacteria import ions and small organic osmolytes, deemed compatible solutes, to equilibrate cytoplasmic osmolarity with the extracellular environment.

View Article and Find Full Text PDF

Cyclic-di-AMP (c-di-AMP) is a broadly conserved bacterial second messenger that is of importance in bacterial physiology. The molecular receptors mediating the cellular responses to the c-di-AMP signal are just beginning to be discovered. PstA is a previously uncharacterized PII -like protein which has been identified as a c-di-AMP receptor.

View Article and Find Full Text PDF

Cyclic di-adenosine monophosphate (c-di-AMP) is a broadly conserved second messenger required for bacterial growth and infection. However, the molecular mechanisms of c-di-AMP signaling are still poorly understood. Using a chemical proteomics screen for c-di-AMP-interacting proteins in the pathogen Listeria monocytogenes, we identified several broadly conserved protein receptors, including the central metabolic enzyme pyruvate carboxylase (LmPC).

View Article and Find Full Text PDF

Biotin carboxylase (BC) is a conserved component among biotin-dependent carboxylases and catalyzes the MgATP-dependent carboxylation of biotin, using bicarbonate as the CO₂ donor. Studies with Escherichia coli BC have suggested long-range communication between the two active sites of a dimer, although its mechanism is not well understood. In addition, mutations in the dimer interface can produce stable monomers that are still catalytically active.

View Article and Find Full Text PDF

The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A means to achieve this goal is to create synthetic polymers of defined sequence where all relevant folding information is incorporated into a single polymer strand. We present here the aqueous self-assembly of peptoid polymers (N-substituted glycines) into ultrathin, two-dimensional highly ordered nanosheets, where all folding information is encoded into a single chain.

View Article and Find Full Text PDF

The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions.

View Article and Find Full Text PDF