Publications by authors named "Philip G Browning"

The brain displays a remarkable ability to adapt following injury by altering its connections through neural plasticity. Many of the biological mechanisms that underlie plasticity are known, but there is little knowledge as to when, or where in the brain plasticity will occur following injury. This knowledge could guide plasticity-promoting interventions and create a more accurate roadmap of the recovery process following injury.

View Article and Find Full Text PDF

Background: Single unit recording in behaving nonhuman primates is widely used to study the primate central nervous system. However, certain questions cannot be addressed without recording large numbers of neurons simultaneously. Multiple 96-electrode probes can be implanted at one time, but certain problems must be overcome to make this approach practical.

View Article and Find Full Text PDF

It is proposed that mediodorsal thalamus contributes to cognition via interactions with prefrontal cortex. However, there is relatively little evidence detailing the interactions between mediodorsal thalamus and prefrontal cortex linked to cognition in primates. This study investigated these interactions during learning, memory, and decision-making tasks in rhesus monkeys using a disconnection lesion approach.

View Article and Find Full Text PDF

In the absence of external stimuli or task demands, correlations in spontaneous brain activity (functional connectivity) reflect patterns of anatomical connectivity. Hence, resting-state functional connectivity has been used as a proxy measure for structural connectivity and as a biomarker for brain changes in disease. To relate changes in functional connectivity to physiological changes in the brain, it is important to understand how correlations in functional connectivity depend on the physical integrity of brain tissue.

View Article and Find Full Text PDF

Neural mechanisms in the temporal lobe are essential for recognition memory. Evidence from human functional imaging and neuropsychology, and monkey neurophysiology and neuropsychology also suggests a role for prefrontal cortex in recognition memory. To examine the interaction of these cortical regions in support of recognition memory we tested rhesus monkeys with prefrontal-inferotemporal (PFC-IT) cortical disconnection on two recognition memory tasks, a "constant negative" task, and delayed nonmatching-to-sample (DNMS).

View Article and Find Full Text PDF

Episodic memory depends on a network of interconnected brain structures including the inferior temporal cortex, hippocampus, fornix, and mammillary bodies. We have previously shown that a moderate episodic memory impairment in monkeys with transection of the fornix is exacerbated by prior depletion of acetylcholine from inferotemporal cortex, despite the fact that depletion of acetylcholine from inferotemporal cortex on its own has no effect on episodic memory. Here we show that this effect occurs because inferotemporal acetylcholine facilitates recovery of function following structural damage within the neural circuit for episodic memory.

View Article and Find Full Text PDF

Anatomical and functional studies of the prefrontal cortex (PFC) have identified multiple PFC subregions. We argue that the PFC is involved in cognitive functions exceeding the sum of specific functions attributed to its subregions. These can be revealed either by lesions of the whole PFC, or more specifically by selective disconnection of the PFC from certain types of information (for example, visual) allowing the investigation of PFC function in toto.

View Article and Find Full Text PDF

Much of our behavior is guided by rules. Although human prefrontal cortex (PFC) and anterior cingulate cortex (ACC) are implicated in implementing rule-guided behavior, the crucial contributions made by different regions within these areas are not yet specified. In an attempt to bridge human neuropsychology and nonhuman primate neurophysiology, we report the effects of circumscribed lesions to macaque orbitofrontal cortex (OFC), principal sulcus (PS), superior dorsolateral PFC, ventrolateral PFC, or ACC sulcus, on separable cognitive components of a Wisconsin Card Sorting Test (WCST) analog.

View Article and Find Full Text PDF

To examine the generality of cholinergic involvement in visual memory in primates, we trained macaque monkeys either on an object-in-place scene learning task or in delayed nonmatching-to-sample (DNMS). Each monkey received either selective cholinergic depletion of inferotemporal cortex (including the entorhinal cortex and perirhinal cortex) with injections of the immunotoxin ME20.4-saporin or saline injections as a control and was postoperatively retested.

View Article and Find Full Text PDF

The relationship between anterograde and retrograde amnesia remains unclear. Previous data from both clinical neuropsychology and monkey lesion studies suggest that damage to discrete subcortical structures leads to a relatively greater degree of anterograde than retrograde amnesia, whereas damage to discrete regions of cortex leads to the opposite pattern of impairments. Nevertheless, damage to the medial diencephalon in humans is associated with both retrograde and anterograde amnesia.

View Article and Find Full Text PDF

Prefrontal cortex and inferior temporal cortex interact in support of a wide variety of learning and memory functions. In macaque monkeys, a disconnection of prefrontal and temporal cortex produces severe new learning impairments in a range of complex learning tasks such as visuo-motor conditional learning and object-in-place scene learning. The retrograde effects of this disconnection, however, have never been fully examined.

View Article and Find Full Text PDF

Three previous experiments have shown that a disconnection of frontal cortex from inferior temporal cortex in monkeys impairs a variety of visual learning tasks but leaves concurrent object discrimination learning intact. In the present experiment, three monkeys were trained on an object-in-place task where concurrent object discrimination learning took place within unique background scenes. After surgery to transect the uncinate fascicle, the monosynaptic route between prefrontal cortex and inferior temporal cortex, all three monkeys showed an impairment relative to their preoperative performance.

View Article and Find Full Text PDF

The frontal cortex and inferior temporal cortex are strongly functionally interconnected. Previous experiments on prefrontal function in monkeys have shown that a disconnection of prefrontal cortex from inferior temporal cortex impairs a variety of complex visual learning tasks but leaves simple concurrent object-reward association learning intact. We investigated the possibility that temporal components of visual learning tasks determine the sensitivity of those tasks to prefrontal-temporal disconnection by adding specific temporal components to the concurrent object-reward association learning task.

View Article and Find Full Text PDF

Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with bilateral ablations of ventrolateral prefrontal cortex in object-in-place scene learning. These monkeys were mildly impaired in scene learning relative to their own preoperative performance, similar in severity to that of monkeys with bilateral ablation of orbital prefrontal cortex.

View Article and Find Full Text PDF

The mediodorsal thalamus is a major input to the prefrontal cortex and is thought to modulate cognitive functions of the prefrontal cortex. Damage to the medial, magnocellular part of the mediodorsal thalamus (MDmc) impairs cognitive functions dependent on prefrontal cortex, including memory. The contribution of MDmc to other aspects of cognition dependent on prefrontal cortex has not been determined.

View Article and Find Full Text PDF

Two previous studies have shown that frontal-temporal disconnection in monkeys, produced by unilateral ablation of frontal cortex in one hemisphere and of visual inferior temporal cortex in the opposite hemisphere is entirely without effect on visual object-reward association learning in concurrent discrimination tasks. This is a surprising finding in light of the severe impairments that follow frontal-temporal disconnection in many other tests of visual learning and memory, including delayed matching-to-sample and several conditional learning tasks. To explore the limits of this preserved object-reward association learning, we trained monkeys on visual object discrimination learning set (DLS) prior to frontal-temporal disconnection.

View Article and Find Full Text PDF

Previous ablation studies in monkeys suggest that prefrontal cortex is involved in a wide range of learning and memory tasks. However, monkeys with crossed unilateral lesions of frontal and temporal cortex are unimpaired at concurrent object-reward association learning but are impaired at conditional learning and the implementation of memory-based performance rules. We trained seven monkeys preoperatively on an associative learning task that required them to associate objects embedded in unique complex scenes with reward.

View Article and Find Full Text PDF

Four rhesus monkeys (Macaca mulatta) were trained preoperatively in a test of object-in-place scene memory. They were presented daily with lists of unique computer-generated scenes each containing a spatial array of multiple individual objects. Within each scene, objects to be discriminated appeared in the foreground, each occupying a unique location, and monkeys were required to correctly discriminate the rewarded object to receive a food reward.

View Article and Find Full Text PDF

In macaque monkeys (Macaco mulatta), memory for scenes presented on touch screens is fornix dependent. However, scene learning is not a purely spatial task, and existing direct evidence for a fornix role in spatial memory comes exclusively from tasks involving learning about food-reward locations. Here the authors demonstrate that fornix transection impairs learning about spatial stimuli presented on touch screens.

View Article and Find Full Text PDF