Publications by authors named "Philip Duncanson"

The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous.

View Article and Find Full Text PDF

A convenient route to isoindolo[2,1-a]indol-6-ones has been developed starting from the appropriate 2-(N-phthaloyl)benzoic acids. Formation of the acid chlorides with thionyl chloride followed by heating with triethyl phosphite in a suitable solvent resulted in a multistep reaction giving tetracyclic β-ketophosphonates that on reduction with sodium borohydride gave the required indolones in good overall yields. Analogous β-ketophosphonates were also prepared starting with N,N-(1,8-naphthaloyl)-2-aminobenzoic acid and 2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)benzoic acids although of these only the naphthaloyl product could be reduced with sodium borohydride without cleaving the amide bond in the ring system.

View Article and Find Full Text PDF

The complexes formed from the reaction of N-acylated tris-(pyridin-2-yl)methylamine (LH) with [Re(CO)(5)Br] depend on the structure of the ligand and the reaction conditions. Thus, while N-[1,1,1-tris-(pyridin-2-yl)methyl]acetamide coordinates through the three pyridine nitrogens to give a stable cationic complex [LHRe(CO)(3)Br], the analogous N-benzoyl ligand reacts under similar conditions to give a neutral complex [LRe(CO)(3)] with coordination through two pyridine nitrogens and a deprotonated amide. To try to explain these different outcomes, the reactions of some structurally related N-acylated [1,1-bis(pyridin-2-yl)]methylamines (L'H) with [Re(CO)(5)Br] have been studied and the reaction pathways identified.

View Article and Find Full Text PDF

Dialkyl heteroaroylphosphonates based on thiophene, pyrrole or furan have been prepared and their reactions with trimethyl phosphite investigated. Deoxygenation of the carbonyl groups in these heteroaroylphosphonates occurs to give carbene intermediates, which then undergo further reaction. In the case of the furan-3-oylphosphonates and those systems containing a thiophene or pyrrole ring, the major reaction pathway involves intermolecular trapping of the carbene intermediates by the trimethyl phosphite, leading to the formation of ylidic phosphonates that can be readily converted into the corresponding 1,1-bisphosphonates.

View Article and Find Full Text PDF