[reaction: see text] Most of the reactants immobilized on conventional solid-phase resins are buried inside the interiors of lightly cross-linked polystyrene beads. An orthogonal support of solid-phase resins needs to be small enough to penetrate the interpolymeric chain spaces of a swollen resin to reach reaction sites. In this paper, we report the use of magnetic nanoparticles ( approximately 4 nm) as an orthogonal matrix to assist solid-phase reactions.
View Article and Find Full Text PDFRecycling of homogeneous catalysts could be achieved by using magnetic nanoparticles and solid-phase beads, but nanoparticle-supported catalysis proceeded much faster than its counterpart on resins.
View Article and Find Full Text PDFChem Commun (Camb)
September 2005
Candida rugosa lipase immobilized on maghemite nanoparticles demonstrated high stereoselectivity in kinetic resolution of racemic carboxylates and improved long-term stability over its parent free enzyme, allowing the supported enzyme to be repeatedly used for a series of chiral resolution reactions.
View Article and Find Full Text PDFEmulsion polymerization was examined as a novel route for the synthesis of core/shell superparamagnetic nanoparticles consisting of a highly crystalline gamma-Fe2O3 core and a very thin polymeric shell wall. These nanoparticles were used as soluble supports for immobilizing Pd catalysts to promote Suzuki cross-coupling reactions. Recovery of catalysts was facilely achieved by applying a permanent magnet externally.
View Article and Find Full Text PDF