Understanding species distribution across habitats and environmental variables is important to inform area-based management. However, observational data are often lacking, particularly from developing countries, hindering effective conservation design. One such data-poor area is the Gulf of Guinea, an understudied and biodiverse region where coastal waters play a critical role in coastal livelihoods.
View Article and Find Full Text PDFTropical estuaries support wetlands with high biodiversity value and provide essential ecosystem services. Many of these systems, however, are global hotspots for urbanization, particularly in Asia, where this process has resulted in rapid conversion, fragmentation, and degradation of 80 % of the wetlands along the East Asian-Australasian Flyway (EAAF) for migratory birds. However, the impact of such landscape scale changes on migratory birds at a key stopover site along the EAAF has not been evaluated.
View Article and Find Full Text PDFElasmobranchs (sharks, rays, and skates) are caught throughout fisheries globally, leading to over one-third of species being threatened with extinction. Oceanic shark populations have undergone an average 71% decline over the last half century, owing to an 18-fold increase in relative fishing pressure. Incidental capture or 'bycatch' is a primary driver of population declines, and poses an important challenge for species conservation.
View Article and Find Full Text PDFKnowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species.
View Article and Find Full Text PDFIllegal, unregulated, and unreported (IUU) fishing poses a major threat to effective management of marine resources, affecting biodiversity and communities dependent on these coastal resources. Spatiotemporal patterns of industrial fisheries in developing countries are often poorly understood, and global efforts to describe spatial patterns of fishing vessel activity are currently based on automatic identification system (AIS) data. However, AIS is often not a legal requirement on fishing vessels, likely resulting in underestimates of the scale and distribution of legal and illegal fishing activity, which could have significant ramifications for targeted enforcement efforts and the management of fisheries resources.
View Article and Find Full Text PDFBackground: State-space models are important tools for quality control and analysis of error-prone animal movement data. The near real-time (within 24 h) capability of the Argos satellite system can aid dynamic ocean management of human activities by informing when animals enter wind farms, shipping lanes, and other intensive use zones. This capability also facilitates the use of ocean observations from animal-borne sensors in operational ocean forecasting models.
View Article and Find Full Text PDFMigratory movements in response to seasonal resources often influence population structure and dynamics. Yet in mobile marine predators, population genetic consequences of such repetitious behaviour remain inaccessible without comprehensive sampling strategies. Temporal genetic sampling of seasonally recurring aggregations of planktivorous basking sharks, Cetorhinus maximus, in the Northeast Atlantic (NEA) affords an opportunity to resolve individual re-encounters at key sites with population connectivity and patterns of relatedness.
View Article and Find Full Text PDFDetecting the effects of introduced artificial structures on the marine environment relies upon research and monitoring programs that can provide baseline data and the necessary statistical power to detect biological and/or ecological change over relevant spatial and temporal scales. Here we report on, and assess the use of, Baited Remote Underwater Video (BRUV) systems as a technique to monitor diversity, abundance and assemblage composition data to evaluate the effects of marine renewable energy infrastructure on mobile epi-benthic species. The results from our five-year study at a wave energy development facility demonstrate how annual natural variation (time) and survey design (spatial scale and power) are important factors in the ability to robustly detect change in common ecological metrics of benthic and bentho-pelagic ecosystems of the northeast Atlantic.
View Article and Find Full Text PDFShark take, driven by vast demand for meat and fins, is increasing. We set out to gain insights into the impact of small-scale longline fisheries in Peru. Onboard observers were used to document catch from 145 longline fishing trips (1668 fishing days) originating from Ilo, southern Peru.
View Article and Find Full Text PDF