Osteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWASs) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. To address this gap, we mapped gene expression, chromatin accessibility, and 3D chromatin structure in primary human articular chondrocytes in both resting and OA-mimicking conditions.
View Article and Find Full Text PDFOsteoarthritis affects millions worldwide, yet effective treatments remain elusive due to poorly understood molecular mechanisms. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, identifying the genes impacted at each locus remains challenging. Several studies have mapped expression quantitative trait loci (eQTL) in chondrocytes and colocalized them with OA GWAS variants to identify putative OA risk genes; however, the degree to which genetic variants influence OA risk via alternative splicing has not been explored.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common form of arthritis and a leading cause of pain and disability in adults. A central feature is progressive cartilage degradation and matrix fragment formation driven by the excessive production of matrix metalloproteinases (MMPs), such as MMP-13, by articular chondrocytes. Inflammatory factors, including interleukin 6 (IL-6), are secreted into the joint by synovial fibroblasts, and can contribute to pain and inflammation.
View Article and Find Full Text PDFOsteoarthritis (OA) poses a significant healthcare burden with limited treatment options. While genome-wide association studies (GWAS) have identified over 100 OA-associated loci, translating these findings into therapeutic targets remains challenging. Integrating expression quantitative trait loci (eQTL), 3D chromatin structure, and other genomic approaches with OA GWAS data offers a promising approach to elucidate disease mechanisms; however, comprehensive eQTL maps in OA-relevant tissues and conditions remain scarce.
View Article and Find Full Text PDFGenome-wide association studies have identified over 100 loci associated with osteoarthritis risk, but the majority of osteoarthritis risk variants are noncoding, making it difficult to identify the impacted genes for further study and therapeutic development. To address this need, we used a multiomic approach and genome editing to identify and functionally characterize potential osteoarthritis risk genes. Computational analysis of genome-wide association studies and ChIP-seq data revealed that chondrocyte regulatory loci are enriched for osteoarthritis risk variants.
View Article and Find Full Text PDFCurr Opin Pharmacol
June 2022
Cellular senescence is associated with normal development and wound healing, but has also been implicated in the pathogenesis of numerous aging-related diseases including osteoarthritis (OA). Treatment strategies for OA are being developed that target senescent cells and the paracrine and autocrine secretions of the senescence-associated secretory phenotype (SASP). The field of potential therapies continues to expand as new mechanistic targets of cell senescence and the SASP are identified.
View Article and Find Full Text PDFObjective: The study objective was to determine whether overexpression of the mitochondrial antioxidant peroxidase, peroxiredoxin 3 (Prx3), reduces the severity of osteoarthritis (OA) in mice.
Methods: Age-related OA (age 18 and 24 months) and OA induced by destabilization of the medial meniscus (DMM at age 6 months) were assessed in male mice that overexpress a human Prdx3 transgene encoding the Prx3 protein. Lox-stop-lox-Prdx3 (iPrdx3) mice were crossed with aggrecan-Cre mice to produce iPrdx3AgCre or with Col2Cre to produce iPrdx3Col2Cre mice.
Nat Rev Rheumatol
January 2021
The development of osteoarthritis (OA) correlates with a rise in the number of senescent cells in joint tissues, and the senescence-associated secretory phenotype (SASP) has been implicated in cartilage degradation and OA. Age-related mitochondrial dysfunction and associated oxidative stress might induce senescence in joint tissue cells. However, senescence is not the only driver of OA, and the mechanisms by which senescent cells contribute to disease progression are not fully understood.
View Article and Find Full Text PDFThe tumor suppressor protein p16 (p16) is a well-established hallmark of aging that induces cellular senescence in response to stress. Previous studies have focused primarily on p16 regulation at the transcriptional level; comparatively little is known about the protein's intracellular localization and degradation. The autophagy-lysosomal pathway has been implicated in the subcellular trafficking and turnover of various stress-response proteins and has also been shown to attenuate age-related pathologies, but it is unclear whether p16 is involved in this pathway.
View Article and Find Full Text PDFComplete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases.
View Article and Find Full Text PDF