The radiometal gallium-68 (Ga-68) has garnered significant interest due to its convenient production via compact and widely available generators and the high performance of Ga-labeled compounds for positron-emission tomography (PET) imaging for cancer diagnosis and management of patients undergoing targeted radionuclide therapy. Given the short half life of Ga-68 (68 min), microfluidic-based radiosynthesis is a promising avenue to establish very rapid, efficient, and routine radiolabeling with Ga-68; however, the typical elution volume of Ga-68 from a generator (4-10 mL) is incompatible with the microliter reaction volumes of microfluidic devices. To bridge this gap, we developed a microscale cartridge-based approach to concentrate Ga-68.
View Article and Find Full Text PDFBackground: Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours of the gastrointestinal tract. The New Zealand (NZ) population incidence has not previously been documented nor has the potential effect of ethnicity been reviewed. We furthermore wanted to assess the difference between those undergoing a wedge resection versus a more extensive operation which we hypothesised would correlate with recurrence and mortality.
View Article and Find Full Text PDFThe increasing number of positron-emission tomography (PET) tracers being developed to aid drug development and create new diagnostics has led to an increased need for radiosynthesis development and optimization. Current radiosynthesis instruments are designed to produce large-scale clinical batches and are often limited to performing a single synthesis before they must be decontaminated by waiting for radionuclide decay, followed by thorough cleaning or disposal of synthesizer components. Though with some radiosynthesizers it is possible to perform a few sequential radiosyntheses in a day, none allow for parallel radiosyntheses.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
December 2020
Background: Current automated radiosynthesizers are generally optimized for producing large batches of PET tracers. Preclinical imaging studies, however, often require only a small portion of a regular batch, which cannot be economically produced on a conventional synthesizer. Alternative approaches are desired to produce small to moderate batches to reduce cost and the amount of reagents and radioisotope needed to produce PET tracers with high molar activity.
View Article and Find Full Text PDFMicrofluidics offers numerous advantages for the synthesis of short-lived radiolabeled imaging tracers: performing F-radiosyntheses in microliter-scale droplets has exhibited high efficiency, speed, and molar activity as well as low reagent consumption. However, most reports have been at the preclinical scale. In this study we integrate a [F]fluoride concentrator and a microdroplet synthesizer to explore the possibility of synthesizing patient doses and multi-patient batches of clinically-acceptable tracers.
View Article and Find Full Text PDFDuring the development of novel tracers for positron emission tomography (PET), the optimization of the synthesis is hindered by practical limitations on the number of experiments that can be performed per day. Here we present a microliter droplet chip that contains multiple sites (4 or 16) to perform reactions simultaneously under the same or different conditions to accelerate radiosynthesis optimization.
View Article and Find Full Text PDFApplication of microfluidics offers numerous advantages in the field of radiochemistry and could enable dramatic reductions in the cost of producing radiotracers for positron emission tomography (PET). Droplet-based microfluidics, in particular, requires only microgram quantities of expensive precursors and reagents (compared to milligram used in conventional radiochemistry systems), and occupies a more compact footprint (potentially eliminating the need for specialized shielding facilities, i.e.
View Article and Find Full Text PDFConcentration of [F]fluoride has been mentioned in literature, however, reports have lacked details about system designs, operation, and performance. Here, we describe in detail a compact, fast, fully-automated concentration system based on a micro-sized strong anion exchange cartridge. The concentration of radionuclides enables scaled-up microfluidic synthesis.
View Article and Find Full Text PDFDespite the increasing importance of positron emission tomography (PET) imaging in research and clinical management of disease, access to myriad new radioactive tracers is severely limited due to their short half-lives (which requires daily production) and the high cost and complexity of tracer production. The application of droplet microfluidics based on electrowetting-on-dielectric (EWOD) to the field of radiochemistry can significantly reduce the amount of radiation shielding necessary for safety and the amount of precursor and other reagents needed for the synthesis. Furthermore, significant improvements in the molar activity of the tracers have been observed.
View Article and Find Full Text PDFShort-lived radiolabeled tracers for positron emission tomography (PET) must be rapidly synthesized, purified, and formulated into injectable solution just prior to imaging. Current radiosynthesizers are generally designed for clinical use, and the HPLC purification and SPE formulation processes often result in a final volume that is too large for preclinical and emerging in vitro applications. Conventional technologies and techniques for reducing this volume tend to be slow, resulting in radioactive decay of the product, and often require manual handling of the radioactive materials.
View Article and Find Full Text PDF