Oral drug delivery is a preferred route because of good patient compliance. However, most peptide/ protein drugs are delivered via parenteral routes because of the absorption barriers in the gastrointestinal (GI) tract such as enzymatic degradation by proteases and low permeability acrossthe biological membranes. To overcome these barriers, different formulation strategies for oral delivery of biomacromolecules have been proposed, including lipid based formulations and polymer-based particulate drug delivery systems (DDS).
View Article and Find Full Text PDFPurpose: To investigate the in vitro release and degradation of desmopressin from saturated triglyceride microparticles under both lipolytic and proteolytic conditions.
Methods: The release of desmopressin from different solid lipid microparticles in the absence and presence of a microbial lipase and protease was determined. Trilaurin (TG12), trimyristin (TG14), tripalmitin (TG16), and tristearin (TG18) were used as lipid excipients to produce solid lipid microparticles.
The present study aims at evaluating the ability of a gastro-intestinal in vitro lipolysis model to predict the performance of two lipid formulations and a conventional tablet containing a poorly soluble drug, cinnarizine, in dogs, both in the fasted and fed state. A self-nano-emulsifying drug delivery system (SNEDDS) was either dosed in a hard gelatin capsule (SNEDDS-C) or loaded onto a porous tablet core (SNEDDS-T) and compared to a marketed conventional tablet (Conv) in an in vitro lipolysis model. The model simulates the digestion in the stomach and intestine during either the fasted or the fed state.
View Article and Find Full Text PDF