DNA methyltransferases (DNMTs) and ten-eleven translocation proteins (TETs) facilitate methylation and hydroxymethylation of DNA, respectively. DNMTs are widely studied with conflicting results on their regulation in the endometrium. While the role of TETs in the endometrium remains relatively unexplored.
View Article and Find Full Text PDFContext: Endometriosis is a chronic inflammatory disease that causes pain and infertility in women of reproductive age.
Objective: To investigate the pathologic pathways in endometrial stromal and epithelial cells that contribute to the manifestation of endometriosis.
Design: In vitro cellular and molecular analyses of isolated eutopic endometrial stromal and epithelial cells.
Background: In pregnancy, the decidualised endometrium expresses high levels of prorenin and other genes of the renin-angiotensin system (RAS) pathway. In this study we aimed to determined if the RAS was present in endometrial stromal cells and if decidualisation upregulated the expression of prorenin, the prorenin receptor ((P)RR) and associated RAS pathways. Immortalised human endometrial stromal cells (HESCs) can be stimulated to decidualise by combined treatment with medroxyprogesterone acetate (MPA), 17β-estradiol (E2) and cAMP (MPA-mix) or with 5-aza-2'-deoxycytidine (AZA), a global demethylating agent.
View Article and Find Full Text PDFSpecialized cell types of trophoblast cells form the placenta in which each cell type has particular properties of proliferation and invasion. The placenta sustains the growth of the fetus throughout pregnancy and any aberrant trophoblast differentiation or invasion potentially affects the future health of the child and adult. Recently, the field of epigenetics has been applied to understand differentiation of trophoblast lineages and embryonic stem cells (ESC), from fertilization of the oocyte onward.
View Article and Find Full Text PDFProgesterone, estrogen and cyclic adenosine monophosphate (cAMP) together regulate the decidualization of human endometrial stromal cells in a time-dependent manner. The role of DNA methylation and the three active DNA methyltransferases (DNMTs) in the regulation of decidualization is gaining interest but the exact role of this epigenetic mechanism during decidualization is largely unknown. We aimed to understand the effect of the main regulators of decidualization on the expression of the DNMTs and in turn on the expression of steroid hormone receptors during the decidualization.
View Article and Find Full Text PDFObjective: Differentiation of endometrial stromal cells into decidual cells is crucial for optimal endometrial receptivity. Data from our previous microarray study implied that expression of many cell cycle regulators are changed during decidualization and inhibition of DNA methylation in vitro. In this study, we hypothesized that both the classic progestin treatment and DNA methylation inhibition would inhibit stromal cell proliferation and cell cycle transition.
View Article and Find Full Text PDFBackground: Decidualization, the differentiation of endometrial stromal cells is a crucial step for successful implantation of an embryo, development of the placenta and completion of pregnancy to term. Epigenetic mechanisms are thought to be strongly involved in the regulation of processes controlling implantation, placentation, organ formation and foetal growth. Recent studies suggest that decreased DNA methylation facilitates a receptive endometrium.
View Article and Find Full Text PDF