Premise: Target sequence capture (Hyb-Seq) is a cost-effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low-copy orthologs, Hyb-Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726-a Hyb-Seq probe set targeting 1726 low-copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae-which will aid the often-challenging delineation and resolution of evolutionary relationships within Asparagaceae.
View Article and Find Full Text PDFThe genus Asparagus arose ∼9 to 15 million years ago (Ma), and transitions from hermaphroditism to dioecy (separate sexes) occurred ∼3 to 4 Ma. Roughly 27% of extant Asparagus species are dioecious, while the remaining are bisexual with monoclinous flowers. As such, Asparagus is an ideal model taxon for studying the early stages of dioecy and sex chromosome evolution in plants.
View Article and Find Full Text PDFPremise: Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes.
View Article and Find Full Text PDFPremise: Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self-) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear.
View Article and Find Full Text PDF