Centralized high-throughput purification laboratories routinely produce large numbers of test tubes with fractions containing the purified compounds of interest interspersed with test tubes containing fractions collected from undesired peaks. Because the next step after purification entails the removal of the solvent in a centrifugal evaporator with multiple sample positions per rotor, select test tubes must be labeled prior to dry-down to track the identity of each compound. The diversity of test tube sizes and tray configurations from different chromatography system vendors complicates this labeling task.
View Article and Find Full Text PDFThe productivity of medicinal chemistry programs can be significantly increased through the introduction of automation, leading to shortened discovery cycle times. Herein, we describe a platform that consolidates synthesis, purification, quantitation, dissolution, and testing of small molecule libraries. The system was validated through the synthesis and testing of two libraries of binders of polycomb protein EED, and excellent correlation of obtained data with results generated through conventional approaches was observed.
View Article and Find Full Text PDFA novel methodology for the synthesis and purification of drug-like compound libraries has been developed through the use of a microwave reactor with an integrated high-performance liquid chromatography-mass spectrometry (HPLC-MS) system. The strategy uses a fully automated synthesizer with a microwave as energy source and robotic components for weighing and dispensing of solid reagents, handling liquid reagents, capper/crimper of microwave reaction tube assemblies, and transportation. Crude reaction products were filtered through solid-phase extraction cartridges and injected directly onto a reverse-phase chromatography column via an injection valve.
View Article and Find Full Text PDFA flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.
View Article and Find Full Text PDFExperiments were performed to demonstrate the potential of counter-current chromatography (CCC) for the isolation of drugs and their metabolites from biological matrices relevant to the metabolism studies of pharmaceutical research. Examples of typical drugs are spiked into biological media ex vivo to provide test samples for analysis. A mass spectrometer hyphenated to a CCC allows for the detection of small molecule drugs within the matrix through selected ion monitoring, and fraction collection can provide material for further structural elucidation by NMR.
View Article and Find Full Text PDFExperiments were performed to evaluate whether counter-current chromatography (CCC) could function as an alternative purification method to reversed-phase high-performance liquid chromatography (RP-HPLC) and normal-phase supercritical fluid chromatography (SFC). RP-HPLC and SFC are the routine methods currently used in our high-throughput purification (HTP) facility for the purification of high-throughput organic synthesis (HTOS) libraries and medicinal chemistry reaction mixtures. Pre-equilibration of the solvent mixture layers was not mandatory for effective chromatography when hexanes-ethyl acetate-methanol-water (HEMW) solvent mixtures were used.
View Article and Find Full Text PDFA diverse set of 16 high-throughput organic synthesis libraries, consisting of 48 samples per library, has been purified by both preparative supercritical fluid chromatography (SFC) and preparative high-performance liquid chromatography (HPLC). This paper details the relative effectiveness of these two purification techniques in terms of success, yield, and purity of final product.
View Article and Find Full Text PDFFive new antifungal bengazoles (C-G) were isolated and fully characterized from a marine sponge of the genus Jaspis sp. Bengazoles C-G, together with the known bengazoles A and B, comprise a homologous series of n, iso, and anteiso fatty acid esters (C(13)-C(16)) of the same heterocyclic bis(oxazolyl)methanol parent. The complete relative and absolute configurations of the bengazoles were determined by application of the modified Mosher method and interpretation of exciton coupling in the CD spectra of the tetra-p-bromobenzoate derivatives of bengazole A and that of a model tetrol synthesized in seven steps from L-fucose.
View Article and Find Full Text PDF