We report the discovery of a novel series of 3-cinnoline carboxamides as highly potent and selective ataxia telangiectasia mutated (ATM) kinase inhibitors. Optimization of this series focusing on potency and physicochemical properties (especially permeability) led to the identification of compound , a highly potent ATM inhibitor (ATM cell IC 0.0028 μM) with excellent kinase selectivity and favorable physicochemical and pharmacokinetics properties.
View Article and Find Full Text PDFATM inhibitors, such as 7, have demonstrated the antitumor potential of ATM inhibition when combined with DNA double-strand break-inducing agents in mouse xenograft models. However, the properties of 7 result in a relatively high predicted clinically efficacious dose. In an attempt to minimize attrition during clinical development, we sought to identify ATM inhibitors with a low predicted clinical dose (<50 mg) and focused on strategies to increase both ATM potency and predicted human pharmacokinetic half-life (predominantly through the increase of volume of distribution).
View Article and Find Full Text PDFA series of tetrahydroisoquinoline phenols was modified to give an estrogen receptor downregulator-antagonist profile. Optimization around the core, alkyl side chain, and pendant aryl ring resulted in compounds with subnanomolar levels of potency. The phenol functionality was shown to be required to achieve highly potent compounds, but unusually this was compatible with obtaining high oral bioavailabilities in rat.
View Article and Find Full Text PDFThe oral dipeptidyl peptidase 1 (DPP1) inhibitor AZD5248 showed aortic binding in a rat quantitative whole-body autoradiography (QWBA) study, and its development was terminated prior to human dosing. A mechanistic hypothesis for this finding was established invoking reactivity with aldehydes involved in the cross-linking of elastin, a major component of aortic tissue. This was tested by developing a simple aldehyde chemical reactivity assay and a novel in vitro competitive covalent binding assay.
View Article and Find Full Text PDFAgonism of GPR119 is viewed as a potential therapeutic approach for the treatment of type II diabetes and other elements of metabolic syndrome. During progression of a previously disclosed candidate 1 through mice toxicity studies, we observed tonic-clonic convulsions in several mice at high doses. An in vitro hippocampal brain slice assay was used to assess the seizure liability of subsequent compounds, leading to the identification of an aryl sulfone as a replacement for the 3-cyano pyridyl group.
View Article and Find Full Text PDFA series of conformationally restricted GPR119 agonists were prepared based around a 3,8-diazabicyclo[3.2.1]octane scaffold.
View Article and Find Full Text PDFRational structure-based design has yielded highly potent inhibitors of cathepsin K (Cat K) with excellent physical properties, selectivity profiles, and pharmacokinetics. Compounds with a 3,4-(CH₃O)₂Ph motif, such as 31, were found to have excellent metabolic stability and absorption profiles. Through metabolite identification studies, a reactive metabolite risk was identified with this motif.
View Article and Find Full Text PDFThe discovery of nitrile compound 4, a potent inhibitor of Cathepsin K (Cat K) with good bioavailability in dog is described. The compound was used to demonstrate target engagement and inhibition of Cat K in an in vivo dog PD model. The margin to hERG ion channel inhibition was deemed too low for a clinical candidate and an optimisation program to find isosteres or substitutions on benzothiazole group led to the discovery of 20, 24 and 27; all three free from hERG inhibition.
View Article and Find Full Text PDFDirected screening of nitrile compounds revealed 3 as a highly potent cathepsin K inhibitor but with cathepsin S activity and very poor stability to microsomes. Synthesis of compounds with reduced molecular complexity, such as 7, revealed key SAR and demonstrated that baseline physical properties and in vitro stability were in fact excellent for this series. The tricycle carboline P3 unit was discovered by hypothesis-based design using existing structural information.
View Article and Find Full Text PDFG protein coupled receptor 119 (GPR119) is viewed as an attractive target for the treatment of type 2 diabetes and other elements of the metabolic syndrome. During a program toward discovering agonists of GPR119, we herein describe optimization of an initial lead compound, 2, into a development candidate, 42. A key challenge in this program of work was the insolubility of the lead compound.
View Article and Find Full Text PDFDirected screening has identified a novel series of MMP13 inhibitors that possess good levels of activity whilst possessing excellent selectivity over related MMPs. The binding mode of the series has been solved by co-crystallisation and demonstrates an interesting mode of inhibition without interaction with the catalytic zinc atom.
View Article and Find Full Text PDFThe displacement of probes that bind selectively to subdomains IIA or IIIA on human serum albumin (HSA) by competing compounds has been followed using fluorescence spectroscopy, and has therefore been used to assign a primary binding site for these compounds in the presence and absence of fatty acids. The crystal structures have also been solved for three compounds: a matched pair of carboxylic acids whose binding strength to HSA unexpectedly decreased as the lipophilicity increased; and a highly bound sulphonamide that appeared not to displace the probes in the displacement assay. The crystallography results support the findings from the fluorescence displacement assay.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2009
A series of pyrimidine nitrile inhibitors of Cathepsin K with reduced glutathione reactivity has been identified and Molecular Core Matching (MoCoM) has been used to quantify the effect of an amino substituent at C5.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2009
A quantitative assay involving the reaction of nitriles with glutathione and cysteine has been used as a simple in vitro screen to assess potential toxicity risk of candidate compounds in drug discovery. Studies have indicated that, when benchmarked with selected compounds, the reaction of the nitriles with glutathione can provide a useful tool for deciding whether or not to progress compounds in the absence of radiolabelling studies.
View Article and Find Full Text PDF