Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill (Mtb).
View Article and Find Full Text PDFThe Tuberculosis Drug Accelerator, an experiment designed to facilitate collaboration in TB drug discovery by breaking down barriers among competing labs and institutions, has reached the 10-year landmark. We review the consortium’s achievements, advantages and limitations and advocate for application of similar models to other diseases.
View Article and Find Full Text PDFThe identification and development of new anti-tubercular agents are a priority research area. We identified the trifluoromethyl pyrimidinone series of compounds in a whole-cell screen against . Fifteen primary hits had minimum inhibitory concentrations (MICs) with good potency IC is the concentration at which growth is inhibited by 90% (IC < 5 μM).
View Article and Find Full Text PDFTo find new inhibitors of Mycobacterium tuberculosis that have novel mechanisms of action, we miniaturized a high throughput screen to identify compounds that disrupt pH homeostasis. We adapted and validated a 384-well format assay to determine intrabacterial pH using a ratiometric green fluorescent protein. We screened 89000 small molecules under nonreplicating conditions and confirmed 556 hits that reduced intrabacterial pH (below pH 6.
View Article and Find Full Text PDFNitazoxanide has antiparasitic and antibiotic activities including activity against . We prepared and evaluated a set of its analogues to determine the structure-activity relationship, and identified several amide- and urea-based analogues with low micromolar activity against in vitro. Pharmacokinetics in the rat suggested a path forward to obtain bioavailable compounds.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2018
The imidazopyridines are a promising new class of antitubercular agents with potent activity and We isolated mutants of resistant to a representative imidazopyridine; the mutants had large shifts (>20-fold) in MIC. Whole-genome sequencing revealed mutations in Rv1339, a hypothetical protein of unknown function. We isolated mutants resistant to three further compounds from the series; resistant mutants isolated from two of the compounds had single nucleotide polymorphisms in Rv1339 and resistant mutants isolated from the third compound had single nucleotide polymorphisms in QcrB, the proposed target for the series.
View Article and Find Full Text PDFThe phenoxy alkyl benzimidazoles (PABs) have good antitubercular activity. We expanded our structure-activity relationship studies to determine the core components of PABs required for activity. The most potent compounds had minimum inhibitory concentrations against Mycobacterium tuberculosis in the low nanomolar range with very little cytotoxicity against eukaryotic cells as well as activity against intracellular bacteria.
View Article and Find Full Text PDFWe identified a di-substituted triazolopyrimidine with anti-tubercular activity against Mycobacterium tuberculosis. Three segments of the scaffold were examined rationally to establish a structure-activity relationship with the goal of improving potency and maintaining good physicochemical properties. A number of compounds displayed sub-micromolar activity against Mycobacterium tuberculosis with no cytotoxicity against eukaryotic cells.
View Article and Find Full Text PDFThe 2-aminothiazole series has anti-bacterial activity against the important global pathogen Mycobacterium tuberculosis. We explored the nature of the activity by designing and synthesizing a large number of analogs and testing these for activity against M. tuberculosis, as well as eukaryotic cells.
View Article and Find Full Text PDFWe conducted an evaluation of the phenoxyalkylbenzimidazole series based on the exemplar 2-ethyl-1-(3-phenoxypropyl)-1H-benzo[d]imidazole for its antitubercular activity. Four segments of the molecule were examined systematically to define a structure-activity relationship with respect to biological activity. Compounds had submicromolar activity against Mycobacterium tuberculosis; the most potent compound had a minimum inhibitory concentration (MIC) of 52 nM and was not cytotoxic against eukaryotic cells (selectivity index = 523).
View Article and Find Full Text PDFThe RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations.
View Article and Find Full Text PDFThe 2,4-diaminoquinazoline class of compounds has previously been identified as an effective inhibitor of Mycobacterium tuberculosis growth. We conducted an extensive evaluation of the series for its potential as a lead candidate for tuberculosis drug discovery. Three segments of the representative molecule N-(4-fluorobenzyl)-2-(piperidin-1-yl)quinazolin-4-amine were examined systematically to explore structure-activity relationships influencing potency.
View Article and Find Full Text PDFThe enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection.
View Article and Find Full Text PDFA set of fourteen imidazo[1,2-]pyridine-3-carboxamides was synthesized and screened against HRv. The minimum inhibitory concentrations of twelve of these agents were ≤ 1 μM against replicating bacteria and five compounds ( and ) had MIC values ≤ 0.006 μM.
View Article and Find Full Text PDFA set of nine 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamides and one 2,6-dimethylimidazo[1,2-a]pyrimidine-3-carboxamide were synthesized. The compounds were evaluated for their in vitro anti-tuberculosis activity versus replicating, non-replicating, multi- and extensive drug resistant Mtb strains. The MIC(90) values of seven of these agents were ≤ 1 μM against the various tuberculosis strains tested.
View Article and Find Full Text PDFThis article summarizes the proceedings of a symposium held at the conference on "Alcoholism and Stress: A Framework for Future Treatment Strategies" in Volterra, Italy, May 6-9, 2008. Chaired by Markus Heilig and Roberto Ciccocioppo, this symposium offered a forum for the presentation of recent data linking neuropetidergic neurotransmission to the regulation of different alcohol-related behaviors in animals and in humans. Dr.
View Article and Find Full Text PDFBackground: A history of alcohol dependence recruits increased voluntary alcohol intake and sensitivity to stress. Corticotropin-releasing hormone (CRH) has been implicated in this transition, but underlying molecular mechanisms remain unclear.
Methods: A postdependent state was induced using intermittent alcohol exposure.
We describe a novel corticotropin-releasing factor receptor 1 (CRF1) antagonist with advantageous properties for clinical development, and its in vivo activity in preclinical alcoholism models. 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine (MTIP) inhibited 125I-sauvagine binding to rat pituitary membranes and cloned human CRF1 with subnanomolar affinities, with no detectable activity at the CRF2 receptor or other common drug targets. After oral administration to rats, MTIP inhibited 125I-sauvagine binding to rat cerebellar membranes ex vivo with an ED50 of approximately 1.
View Article and Find Full Text PDFThe synthesis and biological evaluation of novel tetrahydroisoquinoline, tetrahydroquinoline, and tetrahydroazepine antagonists of the human and rat H(3) receptors are described. The substitution around these rings as well as the nature of the substituent on nitrogen is explored. Several compounds with high affinity and selectivity for the human and rat H(3) receptors are reported.
View Article and Find Full Text PDFThe anti-proliferative activity of acylated heterocyclic sulfonamides is described in Vascular Endothelial Growth Factor-dependent Human Umbilical Vascular Endothelial Cells (VEGF-HUVEC) and in HCT116 tumor cells in a soft agar diffusion assay.
View Article and Find Full Text PDFTwo closely related diaryl acylsulfonamides were recently reported as potent antitumor agents against a broad spectrum of human tumor xenografts (colon, lung, breast, ovary, and prostate) in nude mice. Especially intriguing was their activity against colorectal cancer xenografts. In this paper, rapid parallel synthesis along with traditional medicinal chemistry techniques were used to quickly delineate the structure-activity relationships of the substitution patterns in both phenyl rings of the acylsufonamide anti-proliferative scaffold.
View Article and Find Full Text PDFAn increasingly competitive pharmaceutical market demands improvement in the efficiency and probability of drug candidate discovery. Usually these new drug candidates are targeted for oral administration, so a detailed understanding of the molecular-level properties that relate to optimal pharmacokinetics is a critical step toward improving the probability of selecting successful clinical candidates. Although the characteristics of druglike molecules have been previously discussed in the literature, the importance of this topic sustains a continued interest for additional perspective and further detailed statistical analyses.
View Article and Find Full Text PDFThe three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones.
View Article and Find Full Text PDF