2',5'-Oligoadenylate synthetase (OAS) enzymes and RNase-L constitute a major effector arm of interferon (IFN)-mediated antiviral defense. OAS produces a unique oligonucleotide second messenger, 2',5'-oligoadenylate (2-5A), that binds and activates RNase-L. This pathway is down-regulated by virus- and host-encoded enzymes that degrade 2-5A.
View Article and Find Full Text PDFInhibition of the signaling pathways of signal transducer and activator of transcription 3 (STAT 3) has shown to be a promising strategy to combat cancer. In this paper we report the design, synthesis and evaluation of a novel class of small molecule inhibitors, that is, XZH-5 and its analogues, as promising leads for further development of STAT3 inhibitors. Preliminary SARs was established for XZH-5 and its derivatives; and the binding modes were predicted by molecular docking.
View Article and Find Full Text PDFA novel tandem metal relay catalytic system was developed by combining gold-catalyzed cycloisomerization with an early transition-metal-catalyzed inverse-electron-demand hetero-Diels-Alder (IED-HDA) reaction. Various biologically important spiroaminals and spiroketals were obtained with very high efficiency under mild conditions.
View Article and Find Full Text PDFA novel class of primary amine-metal Lewis acid bifunctional catalysts based on a bidentate ligand was developed. These catalysts were highly efficient in catalyzing the direct asymmetric aldol reactions of ketones offering excellent stereoselectivity. The aldol reactions required a low catalyst loading (2.
View Article and Find Full Text PDFChem Commun (Camb)
November 2009
The first example of metal Lewis acid-primary amine bifunctional cooperative catalyst derived from primary amino acids was developed, and it was found to catalyze aldol reactions of cyclic ketones highly efficiently with very good to excellent stereoselectivities.
View Article and Find Full Text PDF