This study concerns glulisine, a rapid-acting insulin analogue that plays a fundamental role in diabetes management. We have applied a combination of methods namely X-ray crystallography, and biophysical characterisation to provide a detailed insight into the structure and function of glulisine. X-ray data provided structural information to a resolution of 1.
View Article and Find Full Text PDFPurpose: Insulin, in typical use, undergoes multiple changes in temperature; from refrigerator, to room temperature, to body temperature. Although long-term storage temperature has been well-studied, the short term changes to insulin are yet to be determined. Insulin detemir (IDet) is a clinically available, slow-acting, synthetic analogue characterised by the conjugation of a C14 fatty acid.
View Article and Find Full Text PDFProtein polysaccharide complexes have been widely studied for multiple industrial applications and are popular due to their biocompatibility. Insulin degludec, an analogue of human insulin, exists as di-hexamer in pharmaceutical formulations and has the potential to form long multi-hexamers in physiological environment, which dissociate into monomers to bind with receptors on the cell membrane. This study involved complexation of two negatively charged bio-polymers xanthan and alginate with clinically-relevant insulin degludec (PIC).
View Article and Find Full Text PDF