Anti-Müllerian hormone (AMH) is widely used in the clinic as a biomarker for ovarian reserve and to predict ovarian response to gonadotropin stimulation. Patients with higher AMH levels tend to yield more oocytes and have better outcomes from assisted reproductive technology (ART) procedures. The goal of this study is to determine if AMH can be used to predict the outcome of controlled ovarian stimulation in rhesus macaques, which are commonly used in biomedical research, to refine animal use while maximizing oocyte yield.
View Article and Find Full Text PDFThe Sperm Chromatin Structure Assay (SCSA) is a robust test with high repeatability and precision. It is a clinically accepted assay that defines risk for infertility in men by measuring the degree of DNA fragmentation (% DFI) in sperm. The objective of this study was to adapt and validate the SCSA for rhesus macaques (Macaca mulatta) and establish a range for % DFI in fertile males.
View Article and Find Full Text PDFThe plasma zymogens factor XII (fXII) and factor XI (fXI) contribute to thrombosis in a variety of mouse models. These proteins serve a limited role in hemostasis, suggesting that antithrombotic therapies targeting them may be associated with low bleeding risks. Although there is substantial epidemiologic evidence supporting a role for fXI in human thrombosis, the situation is not as clear for fXII.
View Article and Find Full Text PDFBlood coagulation factor XI (FXI) is an established risk factor for acute ischemic stroke (AIS) and thrombosis, but is also needed for normal hemostasis. Contact factor XII (FXII), an upstream activator of FXI, also contributes to experimental stroke, but is not required for hemostasis. We investigated whether selectively inhibiting FXII-mediated FXI activation, while leaving other FXI and FXII functions intact, could improve the outcome of experimental AIS in mice.
View Article and Find Full Text PDFSystemic preconditioning with the TLR9 ligand CpG induces neuroprotection against brain ischemic injury through a tumor necrosis factor (TNF)-dependent mechanism. It is unclear how systemic administration of CpG engages the brain to induce the protective phenotype. To address this, we created TLR9-deficient reciprocal bone marrow chimeric mice lacking TLR9 on either hematopoietic cells or radiation-resistant cells of nonhematopoietic origin.
View Article and Find Full Text PDFSevere bacterial sepsis often leads to a systemic procoagulant and proinflammatory condition that can manifest as disseminated intravascular coagulation, septic shock, and multiple organ failure. Because activation of the contact proteases factor XII (FXII), prekallikrein, and factor XI (FXI) can trigger coagulation and inflammatory responses, the contact factors have been considered potential targets for the treatment of sepsis. However, the pathogenic role of contact activation in severe infections has not been well defined.
View Article and Find Full Text PDFBackground And Purpose: Systemic administration of Toll-like receptor (TLR) 4 and TLR9 agonists before cerebral ischemia have been shown to reduce ischemic injury by reprogramming the response of the brain to stroke. Our goal was to explore the mechanism of TLR-induced neuroprotection by determining whether a TLR7 agonist also protects against stroke injury.
Methods: C57Bl/6, TNF(-/-), interferon (IFN) regulatory factor 7(-/-), or type I IFN receptor (IFNAR)(-/-) mice were subcutaneously administered the TLR7 agonist Gardiquimod (GDQ) 72 hours before middle cerebral artery occlusion.
Ischemic tolerance can be induced by numerous preconditioning stimuli, including various Toll-like receptor (TLR) ligands. We have shown previously that systemic administration of the TLR4 ligand LPS or the TLR9 ligand unmethylated CpG oligodeoxynucleotide before transient brain ischemia in mice confers substantial protection against ischemic damage. To elucidate the molecular mechanisms of preconditioning, we compared brain genomic profiles in response to preconditioning with these TLR ligands and with preconditioning via exposure to brief ischemia.
View Article and Find Full Text PDFThe close homolog of the adhesion molecule L1 (CHL1) is important during CNS development, but a study with CHL1 knockout mice showed greater functional recovery after spinal cord injury (SCI) in its absence. We investigated CHL1 expression from 1 to 28 days after clinically relevant contusive SCI in Sprague-Dawley rats. Western blot analysis showed that CHL1 expression was significantly up-regulated at day 1 and further increased over 4 weeks after SCI.
View Article and Find Full Text PDFIschemic tolerance is a biological process that can be utilized to unlock the brain's own endogenous protection mechanisms and, as such, holds true promise for patients at risk of ischemic injury. Experimentally, preconditioning with various Toll-like receptor (TLR) agonists has now been demonstrated to successfully attenuate ischemic damage, partly through genomic reprogramming of the body's response to stroke. This treatment diminishes the inflammatory response to stroke and at the same time enhances the production of anti-inflammatory cytokines and neuroprotective mediators.
View Article and Find Full Text PDFSpinal cord contusion produces a central lesion surrounded by a peripheral rim of residual white matter. Despite stimulation of NG2(+) progenitor cell proliferation, the lesion remains devoid of normal glia chronically after spinal cord injury (SCI). To investigate potential cell-cell interactions of the predominant cells in the lesion at 3 days after injury, we used magnetic activated cell sorting to purify NG2(+) progenitors and OX42(+) microglia/macrophages from contused rat spinal cord.
View Article and Find Full Text PDFLipopolysaccharide (LPS) preconditioning provides neuroprotection against subsequent cerebral ischemic injury through activation of its receptor, Toll-like receptor 4 (TLR4). Paradoxically, TLR activation by endogenous ligands after ischemia worsens stroke damage. Here, we define a novel, protective role for TLRs after ischemia in the context of LPS preconditioning.
View Article and Find Full Text PDFIn rats, phasic external urethral sphincter (EUS) activity (bursting) is postulated to be crucial for efficient voiding. This has been reported to be lost after spinal cord transection (txSCI), contributing to impaired function. However, anesthesia may confound evaluating EUS activity.
View Article and Find Full Text PDFYoung rats display an accelerated rate of locomotor recovery after contusive spinal cord injury (SCI) compared to adults subjected to a similar standardized injury. We examined possible differences in the responses to SCI at the injury site and in the distal cord that might contribute to this rapid recovery. P14-15 rats were studied at 1, 3, 5, 7, and 28 days after injury at T8 produced with a weight drop device (10 g x 2.
View Article and Find Full Text PDF