Publications by authors named "Philbert M"

Combined veterinary antibiotics (CVAs) belonging to different antibiotics classes could cause exacerbated impacts on the anaerobic digestion (AD) process of swine manure. Four different antibiotics "two tetracyclines: tetracycline (TC) and oxytetracycline (OTC), one fluoroquinolones: norfloxacin (Norf), and one sulfonamides: sulfadiazine (SDZ)" were combined to evaluate their removal performances and its inhibition effects on AD. Results indicated that CVAs removal decreased from 84.

View Article and Find Full Text PDF

The use of various veterinary antibiotics (VAs) in animal husbandry raises serious concerns about the development of antibiotic resistance. Antibiotics such as tetracycline, oxytetracycline, sulfadiazine, norfloxacin, and enrofloxacin are the most frequently used antimicrobial compounds in animal husbandry and generate large eco-toxicological effects; however, they are still difficult to determine in a complex matrix such as swine manure. This study has developed an effective method for detecting five VAs in swine manure using Ultra-High-Performance Liquid Chromatography-Diode Array Detector (UHPLC-DAD) coupled with on-line solid-phase extraction (SPE).

View Article and Find Full Text PDF

Background And Objectives: To report the clinical, biological, and imaging features and clinical course of a French cohort of patients with glial fibrillary acidic protein (GFAP) autoantibodies.

Methods: We retrospectively included all patients who tested positive for GFAP antibodies in the CSF by immunohistochemistry and confirmed by cell-based assay using cells expressing human GFAPα since 2017 from 2 French referral centers.

Results: We identified 46 patients with GFAP antibodies.

View Article and Find Full Text PDF

Unlabelled: Mutations in COL4A1 have been reported in schizencephaly and porencephaly combined with microbleeds or calcifications, often associated with ocular and renal abnormalities, myopathy, elevated creatine kinase levels and haemolytic anaemia. In this study, we aimed to clarify the phenotypic spectrum of COL4A1/A2 mutations in the context of cortical malformations that include schizencephaly, polymicrogyria and/or heterotopia.

Methods: We screened for COL4A1/A2 mutations in 9 patients with schizencephaly and/or polymicrogyria suspected to be caused by vascular disruption and leading to a cerebral haemorrhagic ischaemic event.

View Article and Find Full Text PDF

The advent of next generation sequencing has improved gene discovery in neurodevelopmental disorders. A greater understanding of the genetic basis of these disorders has expanded the spectrum of pathogenic genes, thus enhancing diagnosis and therapeutic management. Genetic overlap between distinct neurodevelopmental disorders has also been revealed, which can make determining a strict genotype-phenotype correlation more difficult.

View Article and Find Full Text PDF

Postnatal microcephaly comprises a heterogeneous group of neurodevelopmental disorders of varying severity, characterized by normal head size at birth, followed by a postnatal deceleration in head circumference of greater than 3 standard deviations (SD) below the mean. Many postnatal microcephaly syndromes are caused by mutations in genes known to be important for the regulation of gene expression in the developing forebrain. We studied a consanguineous Pakistani family with postnatal microcephaly, orofacial dyskinesia, spastic quadriplegia and, on MRI, cortical atrophy with myelination delay, suggestive of a FOXG1-like presentation.

View Article and Find Full Text PDF
Article Synopsis
  • The ingestion of silver nanoparticles (AgNPs) raises significant health concerns, but their behavior in the stomach, particularly their interaction with proteins like pepsin, is still not well understood.
  • Research showed that AgNPs significantly increased in size when mixed with pepsin in simulated gastric fluid, with smaller particles causing more aggregation, though this did not greatly affect pepsin's ability to break down proteins.
  • The study emphasizes the importance of considering both the size and chemical form of nanoparticles when assessing their potential toxic effects in the human body.
View Article and Find Full Text PDF

EPG5-related Vici syndrome is a rare multisystem autosomal recessive disorder characterized by corpus callosum agenesis (ACC), hypopigmentation, cataracts, acquired microcephaly, failure to thrive, cardiomyopathy and profound developmental delay, and immunodeficiency. We report here the first case of prenatally diagnosed Vici syndrome with delayed gyration associated with ACC. Trio based exome sequencing allowed the identification of a compound heterozygous mutation in the EPG5 gene.

View Article and Find Full Text PDF

There continues to be a significant increase in the number and complexity of hydrophobic nanomaterials that are engineered for a variety of commercial purposes making human exposure a significant health concern. This study uses a combination of biophysical, biochemical and computational methods to probe potential mechanisms for uptake of C60 nanoparticles into various compartments of living immune cells. Cultures of RAW 264.

View Article and Find Full Text PDF

Age-related disturbances in astrocytic mitochondrial function are linked to loss of neuroprotection and decrements in neurological function. The immortalized rat neocortical astrocyte-derived cell line, DI-TNC1, provides a convenient model for the examination of cellular aging processes that are difficult to study in primary cell isolates from aged brain. Successive passages in culture may serve as a surrogate of aging in which time-dependent adaptation to culture conditions may result in altered responses to xenobiotic challenge.

View Article and Find Full Text PDF

The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been used as antimicrobials in a number of applications, including topical wound dressings and coatings for consumer products and biomedical devices. Ingestion is a relevant route of exposure for AgNPs, whether occurring unintentionally via Ag dissolution from consumer products, or intentionally from dietary supplements. AgNP have also been proposed as substitutes for antibiotics in animal feeds.

View Article and Find Full Text PDF

Veterans of Operation Desert Storm/Desert Shield - the 1991 Gulf War (GW) - are a unique population who returned from theater with multiple health complaints and disorders. Studies in the U.S.

View Article and Find Full Text PDF

As silver nanoparticles (AgNPs) are used in a wide array of commercial products and can enter the human body through oral exposure, it is important to understand the fundamental physical and chemical processes leading to changes in nanoparticle size under the conditions of the gastrointestinal (GI) tract. Rapid AgNP growth was observed using nanoparticle tracking analysis with 30 s resolution over a period of 17 min in simulated gastric fluid (SGF) to explore rapid kinetics as a function of pH (SGF at pH 2, 3.5, 4.

View Article and Find Full Text PDF

Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.

View Article and Find Full Text PDF

In recent decades, there has been a significant expansion in our understanding of the role of astrocytes in neuroprotection, including spatial buffering of extracellular ions, secretion of metabolic coenzymes, and synaptic regulation. Astrocytic neuroprotective functions require energy, and therefore require a network of functional mitochondria. Disturbances to astrocytic mitochondrial homeostasis and their ability to produce ATP can negatively impact neural function.

View Article and Find Full Text PDF

Regions of the brain with high energy requirements are especially sensitive to perturbations in mitochondrial function. Hence, neurotoxicant exposures that target mitochondria in regions of high energy demand have the potential to accelerate mitochondrial damage inherently occurring during the aging process. 1,3-Dinitrobenzene (DNB) is a model neurotoxicant that selectively targets mitochondria in brainstem nuclei innervated by the eighth cranial nerve.

View Article and Find Full Text PDF

Fortification is the process of adding nutrients or non-nutrient bioactive components to edible products (e.g., food, food constituents, or supplements).

View Article and Find Full Text PDF

With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB.

View Article and Find Full Text PDF

Cristae, folded subcompartments of the inner mitochondrial membrane (IMM), have complex and dynamic morphologies. Since cristae are the major site of adenosine triphosphate synthesis, morphological changes of cristae have been studied in relation to functional states of mitochondria. In this sense, investigating the functional and structural significance of cristae may be critical for understanding progressive mitochondrial dysfunction.

View Article and Find Full Text PDF

The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria.

View Article and Find Full Text PDF

Nanoparticles' health risks depend on their biodistribution in the body. Phagocytosis may greatly affect this distribution but has not yet explicitly accounted for in whole body pharmacokinetic models. Here, we present a physiologically based pharmacokinetic model that includes phagocytosis of nanoparticles to explore the biodistribution of intravenously injected polyethylene glycol-coated polyacrylamide nanoparticles in rats.

View Article and Find Full Text PDF