Publications by authors named "Phil de Jager"

Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.

View Article and Find Full Text PDF

Introduction: There is increasing interest in plasma amyloid beta (Aβ) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aβ levels may elucidate important biological processes that determine plasma Aβ measures.

Methods: We included 12,369 non-demented participants from eight population-based studies.

View Article and Find Full Text PDF

Importance: Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated.

View Article and Find Full Text PDF
Article Synopsis
  • Men with Alzheimer's disease typically die earlier and show more cognitive deficits compared to women, indicating a significant sex difference in the disease's impact.
  • Research on genetically modified mice demonstrated that the presence of a second X chromosome provides protective effects against mortality and cognitive deficits associated with Alzheimer's.
  • The study indicates that specific genes on the X chromosome may play a role in resilience against Alzheimer's, hinting at the importance of considering sex chromosomes in understanding disease vulnerability.
View Article and Find Full Text PDF

Although Alzheimer's disease (AD) is a central nervous system disease and type 2 diabetes MELLITUS (T2DM) is a metabolic disorder, an increasing number of genetic epidemiological studies show clear link between AD and T2DM. The current approach to uncovering the shared pathways between AD and T2DM involves association analysis; however such analyses lack power to discover the mechanisms of the diseases. As an alternative, we developed novel causal inference methods for genetic studies of AD and T2DM and pipelines for systematic multi-omic casual analysis to infer multilevel omics causal networks for the discovery of common paths from genetic variants to AD and T2DM.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been released.
  • You can find the amendment through a link provided at the top of the paper.
  • This update may contain important changes or additional information related to the original content.
View Article and Find Full Text PDF

In the blood, mosaic somatic aneuploidy (mSA) of all chromosomes has been found to be associated with adverse health outcomes, including hematological cancer. Sex chromosome mSA in the blood has been found to occur at a higher rate than autosomal mSA. Mosaic loss of the Y chromosome is the most common copy number alteration in males, and has been found to be associated with Alzheimer's disease (AD) in blood lymphocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Late-onset Alzheimer's disease (LOAD) is the most common type of dementia and is influenced by genetics.
  • Researchers studied a lot of people (94,437) to find specific genes that may increase the risk of developing LOAD, confirming 20 known ones and discovering 5 new ones.
  • They also found that certain genetic traits related to the immune system and how the brain processes proteins are linked to a higher risk of LOAD, suggesting there are more rare genes yet to be identified that could also play a role.
View Article and Find Full Text PDF

The study of recent natural selection in human populations has important applications to human history and medicine. Positive natural selection drives the increase in beneficial alleles and plays a role in explaining diversity across human populations. By discovering traits subject to positive selection, we can better understand the population level response to environmental pressures including infectious disease.

View Article and Find Full Text PDF