Med Image Comput Comput Assist Interv
November 2014
Nailfold capillaroscopy is an established qualitative technique in the assessment of patients displaying Raynaud's phenomenon. We describe a fully automated system for extracting quantitative biomarkers from capillaroscopy images, using a layered machine learning approach. On an unseen set of 455 images, the system detects and locates individual capillaries as well as human experts, and makes measurements of vessel morphology that reveal statistically significant differences between patients with (relatively benign) primary Raynaud's phenomenon, and those with potentially life-threatening systemic sclerosis.
View Article and Find Full Text PDFBackground: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance.
View Article and Find Full Text PDFWearable human movement measurement systems are increasingly popular as a means of capturing human movement data in real-world situations. Previous work has attempted to estimate segment kinematics during walking from foot acceleration and angular velocity data. In this paper, we propose a novel neural network [GRNN with Auxiliary Similarity Information (GASI)] that estimates joint kinematics by taking account of proximity and gait trajectory slope information through adaptive weighting.
View Article and Find Full Text PDFThis work investigates arm acceleration as a control signal for functional electrical stimulation (FES) of the upper limb during reaching and grasping. We segment the reach and grasp motion into phases and present an artificial neural network (ANN) approach that estimates the phase of the reaching cycle from accelerometer signals. We then select the stimulator command that maximizes successful triggering without unnecessary risk to the patient's safety.
View Article and Find Full Text PDF