Background: Myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) is a common, long-term condition characterised by post-exertional malaise, often with fatigue that is not significantly relieved by rest. ME/CFS has no confirmed diagnostic test or effective treatment and we lack knowledge of its causes. Identification of genes and cellular processes whose disruption adds to ME/CFS risk is a necessary first step towards development of effective therapy.
View Article and Find Full Text PDFVariants in transcription factor GLI2 have been associated with hypopituitarism and structural brain abnormalities, occasionally including holoprosencephaly (HPE). Substantial phenotypic variability and nonpenetrance have been described, posing difficulties in the counseling of affected families. We present three individuals with novel likely pathogenic GLI2 variants, two with truncating and one with a de novo missense variant p.
View Article and Find Full Text PDFThe incorporation of new sophisticated phenotyping technologies within a crop improvement program allows for a plant breeding strategy that can include selections for major root traits previously inaccessible due to the challenges in their phenotype assessment. High-throughput precision phenotyping technology is employed to evaluate root ontogeny and progressive changes to root architecture of both novel amphiploid and introgression lines of over four consecutive months of the growing season and these compared under the same time frame to that of closely related perennial ryegrass () varieties. Root imaging using conventional photography and assembled multiple merged images was used to compare frequencies in root number, their distribution within 0-20 and 20-40 cm depths within soil columns, and progressive changes over time.
View Article and Find Full Text PDFIn this study, we evaluated the ability of the SPACSYS model to simulate water run-off, soil moisture, NO fluxes and grass growth using data generated from a field of the North Wyke Farm Platform. The field-scale model is adapted via a linked and grid-based approach (grid-to-grid) to account for not only temporal dynamics but also the within-field spatial variation in these key ecosystem indicators. Spatial variability in nutrient and water presence at the field-scale is a key source of uncertainty when quantifying nutrient cycling and water movement in an agricultural system.
View Article and Find Full Text PDFThe North Wyke Farm Platform (NWFP) generates large volumes of temporally-indexed data that provides a valuable test-bed for agricultural mathematical models in temperate grasslands. In our study, we used the primary datasets generated from the NWFP (https://nwfp.rothamsted.
View Article and Find Full Text PDFGrassland for livestock production is a major form of land use throughout Europe and its intensive management threatens biodiversity and ecosystem functioning in agricultural landscapes. Modest increases to conventional grassland biodiversity could have considerable positive impacts on the provision of ecosystem services, such as pollination, to surrounding habitats.Using a field-scale experiment in which grassland seed mixes and sward management were manipulated, complemented by surveys on working farms and phytometer experiments, the impact of conventional grassland diversity and management on the functional diversity and ecosystem service provision of pollinator communities were investigated.
View Article and Find Full Text PDFPhylogenetic distances of coexisting species differ greatly within plant communities, but their consequences for decomposers and decomposition remain unknown. We hypothesized that large phylogenetic distance of leaf litter mixtures increases differences of their litter traits, which may, in turn, result in increased resource complementarity or decreased resource concentration for decomposers and hence increased or decreased chemical transformation and reduction of litter. We conducted a litter mixture experiment including 12 common temperate tree species (evolutionarily separated by up to 106 Myr), and sampled after seven months, at which average mass loss was more than 50%.
View Article and Find Full Text PDFBackground: The aim of this study was to ascertain the effect of the N form (NO(3) (-) , NH(4) (+) and organic N) and N concentration on plant isotopic fractionation and on the contribution of the different N sources to the plant N budget, in order to evaluate the feasibility of using plant δ(15) N values for discriminating between conventional and organic crops. To this end, different N concentrations (applied as NO(3) (-) ), N forms (NO(3) (-) versus NH(4) (+) ), and increasing NO(3) (-) applications to an organic N-based fertilization regime were studied.
Results: When using NO(3) (-) as N source, intra-plant fractionation was significant and tended to increase when NO(3) (-) concentration increased in the root medium.