Publications by authors named "Phil Barnett"

Article Synopsis
  • Genetic predisposition to cardiac arrhythmias has been studied extensively, from rare hereditary types to the role of genetic variations like single nucleotide polymorphisms in heart conditions over the last 20 years.
  • Recent genome-wide association studies have discovered numerous genomic locations linked to heart rhythm traits and arrhythmias, particularly highlighting variants in non-coding regulatory elements that influence gene expression related to heart function.
  • Despite progress, challenges remain in pinpointing causal variants and understanding their effects on heart rhythm due to the complex and varied roles of regulatory elements across different tissues and conditions.
View Article and Find Full Text PDF

Background: Congenital heart diseases (CHD) are the most common congenital malformations in newborns and remain the leading cause of mortality among infants under one year old. Molecular diagnosis is crucial to evaluate the recurrence risk and to address future prenatal diagnosis. Here, we describe two families with various forms of inherited non-syndromic CHD and the genetic work-up and resultant findings.

View Article and Find Full Text PDF
Article Synopsis
  • The TBX5 p.G125R variant causes Holt-Oram syndrome and early onset atrial fibrillation, necessitating exploration of its effects on cardiac physiology.
  • An analysis of Holt-Oram syndrome patients’ ECGs and genetically modified mice revealed variable heart rhythms and a susceptibility to atrial fibrillation, without significant morphological changes.
  • Comprehensive studies showed decreased calcium levels and prolonged action potentials in TBX5-p.G125R cardiomyocytes, alongside significant transcriptional and epigenetic changes, indicating the variant's profound impact on heart function.
View Article and Find Full Text PDF

Objectives: Right ventricular (RV) failure is a leading cause of death in patients with congenital heart disease. RV failure is kept at bay during childhood. Limited proliferation of cardiomyocytes is present in the postnatal heart.

View Article and Find Full Text PDF

Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored.

View Article and Find Full Text PDF

Myocardial infarction causes ventricular muscle loss and formation of scar tissue. The surviving myocardium in the border zone, located adjacent to the infarct, undergoes profound changes in function, structure and composition. How and to what extent these changes of border zone cardiomyocytes are regulated epigenetically is not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic variants in the gene for sodium channel Na1.8 are linked to heart conditions like atrial fibrillation and Brugada syndrome, but their specific cardiac functions remain unclear.
  • * In this study, researchers explored the expression of Na1.8 in mouse and human hearts and employed CRISPR/Cas9 to alter a specific intronic enhancer linked to the sodium channel Na1.5.
  • * Findings indicated that while a truncated version of Na1.8 is expressed in the heart, the full-length version isn't; disrupting the enhancer led to reduced sodium current and increased risk of arrhythmia, without affecting Na1.5 expression.*
View Article and Find Full Text PDF

Genome-wide association studies have identified noncoding variants near that are associated with PR interval and QRS duration, suggesting that subtle changes in expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous mutant () mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice.

View Article and Find Full Text PDF

Genome-wide association studies have implicated common genomic variants in the gene desert upstream of in cardiac conduction velocity. Whether these noncoding variants affect expression of or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.

View Article and Find Full Text PDF

Rationale: Genome-wide association studies have identified a large number of common variants (single-nucleotide polymorphisms) associated with atrial fibrillation (AF). These variants are located mainly in noncoding regions of the genome and likely include variants that modulate the function of transcriptional regulatory elements (REs) such as enhancers. However, the actual REs modulated by variants and the target genes of such REs remain to be identified.

View Article and Find Full Text PDF

In 2014, an extensive review discussing the major steps of cardiac development focusing on growth, formation of primary and chamber myocardium and the development of the cardiac electrical system, was published. Molecular genetic lineage analyses have since furthered our insight in the developmental origin of the various component parts of the heart, which currently can be unambiguously identified by their unique molecular phenotype. Moreover, genetic, molecular and cell biological analyses have driven insights into the mechanisms underlying the development of the different cardiac components.

View Article and Find Full Text PDF

Mutations and variations in and around SCN5A, encoding the major cardiac sodium channel, influence impulse conduction and are associated with a broad spectrum of arrhythmia disorders. Here, we identify an evolutionary conserved regulatory cluster with super enhancer characteristics downstream of SCN5A, which drives localized cardiac expression and contains conduction velocity-associated variants. We use genome editing to create a series of deletions in the mouse genome and show that the enhancer cluster controls the conformation of a >0.

View Article and Find Full Text PDF

Disease-associated genetic variants that lie in non-coding regions found by genome-wide association studies are thought to alter the functionality of transcription regulatory elements and target gene expression. To uncover causal genetic variants, variant regulatory elements and their target genes, here we cross-reference human transcriptomic, epigenomic and chromatin conformation datasets. Of 104 genetic variant regions associated with atrial fibrillation candidate target genes are prioritized.

View Article and Find Full Text PDF

The human ether-a-go-go-related gene KCNH2 encodes the voltage-gated potassium channel underlying I, a current critical for the repolarization phase of the cardiac action potential. Mutations in KCNH2 that cause a reduction of the repolarizing current can result in cardiac arrhythmias associated with long-QT syndrome. Here, we investigate the regulation of KCNH2 and identify multiple active enhancers.

View Article and Find Full Text PDF

Background: Surviving cells in the postinfarction border zone are subjected to intense fluctuations of their microenvironment. Recently, border zone cardiomyocytes have been specifically implicated in cardiac regeneration. Here, we defined their unique transcriptional and regulatory properties, and comprehensively validated new molecular markers, including Nppb, encoding B-type natriuretic peptide, after infarction.

View Article and Find Full Text PDF

Background We previously showed that intracranial aneurysm ( IA )-associated single-nucleotide polymorphisms are enriched in promoters and putative enhancers identified in the human circle of Willis, on which IA s develop, suggesting a role for promoters and enhancers in IAs . We further investigated the role of putative enhancers in the pathogenesis of IA by identifying their potential target genes and validating their regulatory activity. Methods and Results Using our previously published circle of Willis chromatin immunoprecipitation and sequencing data, we selected 34 putative enhancers in IA -associated regions from genome-wide association studies.

View Article and Find Full Text PDF

During development, the embryonic heart grows by addition of cells from a highly proliferative progenitor pool and by subsequent precisely controlled waves of cardiomyocyte proliferation. In this period, the heart can compensate for cardiomyocyte loss by an increased proliferation rate of the remaining cardiomyocytes. This proliferative capacity is lost soon after birth, with heart growth continuing by an increase in cardiomyocyte volume.

View Article and Find Full Text PDF

Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study.

View Article and Find Full Text PDF

Atrial natriuretic factor and brain natriuretic peptide are two important biomarkers in clinical cardiology. These two natriuretic peptide hormones are encoded by the paralogous genes Nppa and Nppb, which are evolutionary conserved. Both genes are predominantly expressed by the heart muscle during the embryonic and fetal stages, and in particular Nppa expression is strongly reduced in the ventricles after birth.

View Article and Find Full Text PDF

It is well established that the majority of chlorinated organic substances found in the terrestrial environment are produced naturally. The presence of these compounds in soils is not limited to a single ecosystem. Natural chlorination is also a widespread phenomenon in grasslands and agricultural soils typical for unforested areas.

View Article and Find Full Text PDF

Background: Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death.

View Article and Find Full Text PDF

Background: Mutations in the coding sequence of SCN5A, which encodes the cardiac Na(+) channel α subunit, have been associated with inherited susceptibility to various arrhythmias. Variable expression of SCN5A is a possible mechanism responsible for this pleiotropic effect; however, it is unknown whether variants in the promoter and regulatory regions of SCN5A also modulate the risk of arrhythmias.

Methods And Results: We resequenced the core promoter region of SCN5A and the regulatory regions of SCN5A transcription in 1298 patients with arrhythmia phenotypes (atrial fibrillation, n=444; sinus node dysfunction, n=49; conduction disease, n=133; Brugada syndrome, n=583; and idiopathic ventricular fibrillation, n=89).

View Article and Find Full Text PDF

The ST-segment and adjacent T-wave (ST-T wave) amplitudes of the electrocardiogram are quantitative characteristics of cardiac repolarization. Repolarization abnormalities have been linked to ventricular arrhythmias and sudden cardiac death. We performed the first genome-wide association meta-analysis of ST-T-wave amplitudes in up to 37 977 individuals identifying 71 robust genotype-phenotype associations clustered within 28 independent loci.

View Article and Find Full Text PDF