Drawing inspiration for biomaterials from biological systems has led to many biomedical innovations. One notable bioinspired device, Velcro, consists of two substrates with interlocking ability. Generating reversibly interlocking biomaterials is an area of investigation, as such devices can allow for modular tissue engineering, reversibly interlocking biomaterial interfaces, or friction-based coupling devices.
View Article and Find Full Text PDFElectrostatic flocking is a textile technology that employs a Coulombic driving force to launch short fibers from a charging source towards an adhesive-covered substrate, resulting in a dense array of aligned fibers perpendicular to the substrate. However, electrostatic flocking of insulative polymeric fibers remains a challenge due to their insufficient charge accumulation. We report a facile method to flock electrostatically insulative poly(ε-caprolactone) (PCL) microfibers (MFs) and electrospun PCL nanofiber yarns (NFYs) by incorporating NaCl during pre-flock processing.
View Article and Find Full Text PDFMany measures have been taken since late 2019 to combat the coronavirus disease (COVID-19) pandemic. National, state, and local governments employed precautions, including mask mandates, stay-at-home orders, and social distancing policies, to alleviate the burden on healthcare workers and slow the spread of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) virus until an efficacious vaccine was made widely available. By early spring of 2021, three effective and well-tolerated SARS-CoV-2 vaccines emerged and underwent broad distribution.
View Article and Find Full Text PDF