The gravitational form factors (GFFs) of a hadron encode fundamental aspects of its structure, including its shape and size as defined from, e.g., its energy density.
View Article and Find Full Text PDFThis Letter presents a determination of the quark Collins-Soper kernel, which relates transverse-momentum-dependent parton distributions (TMDs) at different rapidity scales, using lattice quantum chromodynamics (QCD). This is the first such determination with systematic control of quark mass, operator mixing, and discretization effects. Next-to-next-to-leading logarithmic matching is used to match lattice-calculable distributions to the corresponding TMDs.
View Article and Find Full Text PDFThe fraction of the longitudinal momentum of ^{3}He that is carried by the isovector combination of u and d quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is found to be consistent with unity at the few-percent level from calculations with quark masses corresponding to m_{π}∼800 MeV. With a naive extrapolation to the physical quark masses, this constraint is consistent with, and more precise than, determinations from global nuclear parton distribution function fits through the nnnpdf framework.
View Article and Find Full Text PDFWe define a class of machine-learned flow-based sampling algorithms for lattice gauge theories that are gauge invariant by construction. We demonstrate the application of this framework to U(1) gauge theory in two spacetime dimensions, and find that, at small bare coupling, the approach is orders of magnitude more efficient at sampling topological quantities than more traditional sampling procedures such as hybrid Monte Carlo and heat bath.
View Article and Find Full Text PDFComplete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and ^{3}He at SU(3)-symmetric values of the quark masses corresponding to a pion mass m_{π}∼806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments.
View Article and Find Full Text PDFThe potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the nn→pp transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches.
View Article and Find Full Text PDFThe nuclear matrix element determining the pp→de^{+}ν fusion cross section and the Gamow-Teller matrix element contributing to tritium β decay are calculated with lattice quantum chromodynamics for the first time. Using a new implementation of the background field method, these quantities are calculated at the SU(3) flavor-symmetric value of the quark masses, corresponding to a pion mass of m_{π}∼806 MeV. The Gamow-Teller matrix element in tritium is found to be 0.
View Article and Find Full Text PDF