The terms biomimetic and bioinspired are very relevant in the field of bioinorganic chemistry and have been widely applied. Although they were defined by the International Organization for Standardization in 2015, these terms have at times been used rather ambiguously in the literature. This may be due to the inherent complexity of bioinorganic systems where, for example, a structural model of an enzyme active site may not replicate its function.
View Article and Find Full Text PDFElectrochemical oxygen reduction is a promising and sustainable alternative to the current industrial production method for hydrogen peroxide (HO), which is a green oxidant in many (emerging) applications in the chemical industry, water treatment, and fuel cells. Low solubility of O in water causes severe mass transfer limitations and loss of HO selectivity at industrially relevant current densities, complicating the development of practical-scale electrochemical HO synthesis systems. We tested a flow-by and flow-through configuration and suspension electrodes in an electrochemical flow cell to investigate the influence of electrode configuration and flow conditions on mass transfer and HO production.
View Article and Find Full Text PDFChanges in the electronic structure of copper complexes can have a remarkable impact on the catalytic rates, selectivity, and overpotential of electrocatalytic reactions. We have investigated the effect of the half-wave potential () of the Cu/Cu redox couples of four copper complexes with different pyridylalkylamine ligands. A linear relationship was found between of the catalysts and the logarithm of the maximum rate constant of the reduction of O and HO.
View Article and Find Full Text PDFMononuclear copper complexes relevant to the active site of copper nitrite reductases (CuNiRs) are known to be catalytically active for the reduction of nitrite. Yet, their catalytic mechanism has thus far not been resolved. Here, we provide a complete description of the electrocatalytic nitrite reduction mechanism of a bio-inspired CuNiR catalyst Cu(tmpa) (tmpa = tris(2-pyridylmethyl)amine) in aqueous solution.
View Article and Find Full Text PDFUnderstanding how multicopper oxidases (MCOs) reduce oxygen in the trinuclear copper cluster (TNC) is of great importance for development of catalysts for the oxygen reduction reaction (ORR). Herein, we report a mechanistic investigation into the ORR activity of the dinuclear copper complex ( = 2,7-bis[bis(2-pyridylmethyl)aminomethyl]-1,8-naphthyridine). This complex is inspired by the dinuclear T3 site found in the MCO active site and confines the Cu centers in a rigid scaffold.
View Article and Find Full Text PDFThe synthesis, characterization, and electrochemical studies of the dinuclear complex [(MeOH)Fe(Hbbpya)-μ-O-(Hbbpya)Fe(MeOH)](OTf) () (with Hbbpya = -bis(2,2'-bipyrid-6-yl)amine) are described. With the help of online electrochemical mass spectrometry, the complex is demonstrated to be active as a water oxidation catalyst. Comparing the results obtained for different electrode materials shows a clear substrate influence of the electrode, as the complex shows a significantly lower catalytic overpotential on graphitic working electrodes in comparison to other electrode materials.
View Article and Find Full Text PDF