Publications by authors named "Pharhad E Arslan"

Wild-type and mutant transthyretin (TTR) can misfold and deposit in the heart, peripheral nerves, and other sites causing amyloid disease. Pharmacological chaperones, Tafamidis(®) and diflunisal, inhibit TTR misfolding by stabilizing native tetrameric TTR; however, their minimal effective concentration is in the micromolar range. By immune-targeting sparsely populated TTR misfolding intermediates (i.

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients.

View Article and Find Full Text PDF

TAR DNA binding protein of 43 kDa (TDP-43) has been implicated in the pathogenesis of a broad range of neurodegenerative diseases termed TDP-43 proteinopathies, which encompass a spectrum of diseases ranging from amyotrophic lateral sclerosis to frontotemporal dementia. Pathologically misfolded and aggregated forms of TDP-43 are found in cytoplasmic inclusion bodies of affected neurons in these diseases. The mechanism by which TDP-43 misfolding causes disease is not well-understood.

View Article and Find Full Text PDF

Among the diseases of protein misfolding, amyotrophic lateral sclerosis (ALS) is unusual in that the proteinaceous neuronal inclusions that are the hallmark of the disease have neither the classic fibrillar appearance of amyloid by transmission electron microscopy nor the affinity for the dye Congo red that is a defining feature of amyloid. Mutations in the Cu, Zn superoxide dismutase (SOD1) cause the largest subset of inherited ALS cases. The mechanism by which this highly stable enzyme misfolds to form non-amyloid aggregates is currently poorly understood, as are the stresses that initiate misfolding.

View Article and Find Full Text PDF

Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrP(Sc)). Exposure to PrP(Sc) from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility.

View Article and Find Full Text PDF

The amyloid cascade model hypothesizes that neurotoxic oligomers or aggregates formed by the Alzheimer amyloid peptide (Abeta) cause disease pathology in Alzheimer's disease. Attempted treatment strategies for Alzheimer's disease have involved either inhibiting Abeta oligomerization or aggregation, or dissolving existing aggregates. Blocking such downhill processes, however, has proved daunting.

View Article and Find Full Text PDF

Fibrillation of the Alzheimer beta-amyloid peptide (Abeta) and (or) formation of toxic oligomers are key pathological events in Alzheimer's disease. Several strategies have been introduced to identify small molecule aggregation inhibitors, and based on these methods, a number of aggregation inhibitors have been identified. However, most of these methods use chemically synthesized Abeta42 peptides, which are difficult to maintain in a monomeric state at neutral pH where anti-aggregation screening is usually carried out.

View Article and Find Full Text PDF