Polyethylene terephthalate-based nanocomposites with hexagonal boron nitride nanosheets (BNNs) were prepared by a solution casting method with varying concentrations of BNNs from 0.5 wt% to 4 wt%. Melting and crystallization behaviour of the composites were investigated by differential scanning calorimetry, which suggests that with increasing presence of nanosheets, the crystallinity increases and hence the polyethylene terephthalate chain mobility gets restricted, which leads to suppression of crystal growth.
View Article and Find Full Text PDFThe zigzag edges of single- or few-layer graphene are perfect one-dimensional conductors owing to a set of gapless states that are topologically protected against backscattering. Direct experimental evidence of these states has been limited so far to their local thermodynamic and magnetic properties, determined by the competing effects of edge topology and electron-electron interaction. However, experimental signatures of edge-bound electrical conduction have remained elusive, primarily due to the lack of graphitic nanostructures with low structural and/or chemical edge disorder.
View Article and Find Full Text PDF