Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations.
View Article and Find Full Text PDF2D WS nanosheets (NSs) are gaining popularity in the domain of Li-ion batteries (LIBs) due to their unique structures, which can enable reversible insertion and extraction of alkali metal ions. While synthesis methods have mostly relied on the exfoliation of bulk materials or direct growth on substrates, here we report an alternative approach involving colloidal hot-injection synthesis of 2D WS in 2H and 1T' crystal phases followed by their electrophoretic deposition (EPD) on the current collector. The produced 2D WS NSs' films do not require any additional additives during deposition, which boosts the energy density of the additive-free LIBs produced.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
The inherent instability of laser welding, particularly keyhole instability, poses significant challenges in industrial applications, leading to defects such as porosities that compromise weld quality. Various forces act on the keyhole and molten pool during laser welding, influencing process stability. These forces are categorized into those promoting keyhole opening and penetration (e.
View Article and Find Full Text PDFBackground: Posterior reversible encephalopathy syndrome (PRES) is an uncommon neurological disorder which is characterised by variable symptoms. The transient clinical condition may be underestimated and misdiagnosed as other conditions, especially, among pregnant women with severe preeclampsia, eclampsia, and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome in the puerperium. We hereby contribute to the literature this rare complication and hightlight the appropriate management of PRES .
View Article and Find Full Text PDFBackground: Ablation zone segmentation in contrast-enhanced computed tomography (CECT) images enables the quantitative assessment of treatment success in the ablation of liver lesions. However, fully automatic liver ablation zone segmentation in CT images still remains challenging, such as low accuracy and time-consuming manual refinement of the incorrect regions.
Purpose: Therefore, in this study, we developed a semi-automatic technique to address the remaining drawbacks and improve the accuracy of the liver ablation zone segmentation in the CT images.
Sulfur compounds in fuel such as thiophene, benzothiophene and dibenzothiophene are the primary source of SO emissions, leading to environmental pollution and acid rain. In this study, we synthesized a layered oxygen-doped graphitic carbon nitride (OCN) structure and integrated ZnO and TiO nanoparticles onto the OCN surface through a microwave-assisted sol-gel method. The X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) results confirmed a robust interaction between the ZnO and TiO nanoparticles and the oxygen-doped g-CN (OCN) surface, as indicated by the formation of C-N-Ti and C-O-Ti bonds.
View Article and Find Full Text PDFMelanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated.
View Article and Find Full Text PDFAbiotic stress is a major factor affecting crop productivity. Chemical priming is a promising strategy to enhance tolerance to abiotic stress. In this study, we evaluated the use of 1-butanol as an effectual strategy to enhance drought stress tolerance in Arabidopsis thaliana.
View Article and Find Full Text PDFAntimony has a high theoretical capacity and suitable alloying/dealloying potentials to make it a future anode for potassium-ion batteries (PIBs); however, substantial volumetric changes, severe pulverization, and active mass delamination from the Cu foil during potassiation/depotassiation need to be overcome. Herein, we present the use of electrophoretic deposition (EPD) to fabricate binder-free electrodes consisting of Sb nanoparticles (NPs) embedded in interconnected multiwalled carbon nanotubes (MWCNTs). The anode architecture allows volume changes to be accommodated and prevents Sb delamination within the binder-free electrodes.
View Article and Find Full Text PDFDeformable image registration is an essential component of medical image analysis and plays an irreplaceable role in clinical practice. In recent years, deep learning-based registration methods have demonstrated significant improvements in convenience, robustness and execution time compared to traditional algorithms. However, registering images with large displacements, such as those of the liver organ, remains underexplored and challenging.
View Article and Find Full Text PDFThe extent to which electrophores covalently bridged by a saturated linker are electrochemically independent was investigated considering the charge/spin duality of the electron and functionality of the electrophore as a spin carrier upon reduction. By combining computational modeling with electrochemical experiments, we investigated the mechanism by which tethered electrophores react together within 4,4'-oligo[n]methylene-bipyridinium assemblies (with n=2 to 5). We show that native dicationic electrophores (redox state Z=+2) are folded prior to electron injection into the system, allowing the emergence of supra-molecular orbitals (supra-MOs) likely to support the process of the reductive σ bond formation giving cyclomers.
View Article and Find Full Text PDFIntracranial hemorrhage (ICH) resulting from traumatic brain injury is a serious issue, often leading to death or long-term disability if not promptly diagnosed. Currently, doctors primarily use Computerized Tomography (CT) scans to detect and precisely locate a hemorrhage, typically interpreted by radiologists. However, this diagnostic process heavily relies on the expertise of medical professionals.
View Article and Find Full Text PDFBackground: Placenta accreta spectrum disorders (PASDs) increase the mortality rate for mothers and newborns over a decade. Thus, the purpose of the study is to evaluate the neonatal outcomes in emergency cesarean section (CS) and planned surgery as well as in Cesarean hysterectomy and the modified one-step conservative uterine surgery (MOSCUS). The secondary aim is to reveal the factors relating to poor neonatal outcomes.
View Article and Find Full Text PDFGold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system.
View Article and Find Full Text PDFSevere acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease-19 (COVID-19). The COVID-19 pandemic has resulted in millions of deaths and widespread socio-economic damage worldwide. Therefore, numerous studies have been conducted to identify effective measures to control the spreading of the virus.
View Article and Find Full Text PDFObjectives: To compare maternal outcome measures in surgical management of placenta accreta spectrum (PAS)-the modified one-step conservative uterine surgery (MOSCUS), a new approach at Tu Du Hospital in Vietnam, versus cesarean hysterectomy, and to identify factors that appear to contribute to the successful outcome of the MOSCUS.
Methods: This retrospective study was conducted at Tu Du Hospital in southern Vietnam between January 2019 and December 2020. The study enrolled all pregnant women at more than 28 weeks of pregnancy with a diagnosis of PAS who underwent either a cesarean hysterectomy or a uterus-preserving approach using the MOSCUS method.
Purpose: The study aimed to protect patients' skin against ionizing irradiation during radiotherapy by using astaxanthin-encapsulated nanostructured lipid carriers (NLC-ATX).
Materials And Methods: NLC-ATX was prepared by a combined method of hot homogenization and sonication. Cytotoxicity of NLC-ATX was evaluated by MTT colorimetric assay.
Nanoparticles (NP) with optical properties embedded silica particles have been widely used in various fields because of their unique properties. The surfaces of optical NPs have been modified with various organic ligands to maintain their unique optical properties and colloidal stability. Among the surface modification methods, silica encapsulation of optical NPs is widely used to enhance their biocompatibility and stability.
View Article and Find Full Text PDFAerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface.
View Article and Find Full Text PDFThe nanoscale spatiotemporal resolution of single-particle tracking (SPT) renders it a powerful method for exploring single-molecule dynamics in living cells or tissues, despite the disadvantages of using traditional organic fluorescence probes, such as the weak fluorescent signal against the strong cellular autofluorescence background coupled with a fast-photobleaching rate. Quantum dots (QDs), which enable tracking targets in multiple colors, have been proposed as an alternative to traditional organic fluorescence dyes; however, they are not ideally suitable for applying SPT due to their hydrophobicity, cytotoxicity, and blinking problems. This study reports an improved SPT method using silica-coated QD-embedded silica nanoparticles (QD), which represent brighter fluorescence and are less toxic than single QDs.
View Article and Find Full Text PDF