Invest Ophthalmol Vis Sci
July 2024
Purpose: The purpose of this study was to investigate the effect of globe and optic nerve (ON) morphologies and tissue stiffnesses on gaze-induced optic nerve head deformations using parametric finite element modeling and a design of experiment (DOE) approach.
Methods: A custom software was developed to generate finite element models of the eye using 10 morphological parameters: dural radius, scleral, choroidal, retinal, pial and peripapillary border tissue thicknesses, prelaminar tissue depth, lamina cribrosa (LC) depth, ON radius, and ON tortuosity. A central composite face-centered design (1045 models) was used to predict the effects of each morphological factor and their interactions on LC strains induced by 13 degrees of adduction.
Recently proposed deep learning (DL) algorithms for the segmentation of optical coherence tomography (OCT) images to quantify the morphological changes to the optic nerve head (ONH) tissues during glaucoma have limited clinical adoption due to their device specific nature and the difficulty in preparing manual segmentations (training data). We propose a DL-based 3D segmentation framework that is easily translatable across OCT devices in a label-free manner (i.e.
View Article and Find Full Text PDFBackground/aims: Accurate isolation and quantification of intraocular dimensions in the anterior segment (AS) of the eye using optical coherence tomography (OCT) images is important in the diagnosis and treatment of many eye diseases, especially angle-closure glaucoma.
Method: In this study, we developed a deep convolutional neural network (DCNN) for the localisation of the scleral spur; moreover, we introduced an information-rich segmentation approach for this localisation problem. An ensemble of DCNNs for the segmentation of AS structures (iris, corneosclera shell adn anterior chamber) was developed.
Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH).
Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans.
Purpose: We developed a combined biomechanical and hemodynamic model of the human eye to estimate blood flow and oxygen concentration within the lamina cribrosa (LC) and rank the factors that influence LC oxygen concentration.
Methods: We generated 5000 finite-element eye models with detailed microcapillary networks of the LC and computed the oxygen concentration of the lamina retinal ganglion cell axons. For each model, we varied the intraocular pressure (IOP) from 10 mm Hg to 55 mm Hg in 5-mm Hg increments, the cerebrospinal fluid pressure (13 ± 2 mm Hg), cup depth (0.
Glaucoma is a result of irreversible damage to the retinal ganglion cells. While an early intervention could minimise the risk of vision loss in glaucoma, its asymptomatic nature makes it difficult to diagnose until a late stage. The diagnosis of glaucoma is a complicated and expensive effort that is heavily dependent on the experience and expertise of a clinician.
View Article and Find Full Text PDFOptical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the presence of speckle noise affects the quality of OCT images and its interpretation. Although recent frame-averaging techniques have shown to enhance OCT image quality, they require longer scanning durations, resulting in patient discomfort.
View Article and Find Full Text PDFWe introduced a new method for detecting iris surface furrows and identify its associations with dynamic changes in iris volume in healthy eyes. Swept-source optical coherence tomography was performed on 65 subjects with open angle under light and dark conditions. Iris boundaries were identified and a reconstruction of the anterior iris surface was obtained.
View Article and Find Full Text PDF