There is currently no combination of quantum hardware and algorithms that can provide an advantage over conventional calculations of molecules or materials. However, if or when such a point is reached, new strategies will be needed to verify predictions made using quantum devices. We propose that the electron density, obtained through experimental or computational means, can serve as a robust benchmark for validating the accuracy of quantum computation of chemistry.
View Article and Find Full Text PDFDecoherence and gate errors severely limit the capabilities of state-of-the-art quantum computers. This work introduces a strategy for reference-state error mitigation (REM) of quantum chemistry that can be straightforwardly implemented on current and near-term devices. REM can be applied alongside existing mitigation procedures, while requiring minimal postprocessing and only one or no additional measurements.
View Article and Find Full Text PDFA formally exact density functional theory (DFT) determination of the average electron energy is presented. Our theory, which is based on a different accounting of energy functional terms, partially solves one well-known downside of conventional Kohn-Sham (KS) DFT: that electronic energies have but tenuous connections to physical quantities. Calculated average electron energies are close to experimental ionization potentials (IPs) in one-electron systems, demonstrating a surprisingly small effect of self-interaction and other exchange-correlation errors in established DFT methods.
View Article and Find Full Text PDFWe report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state.
View Article and Find Full Text PDFWe report a new full-dimensional and global potential energy surface (PES) for the O + O2 → O3 ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P.
View Article and Find Full Text PDFIn this work, we report on the spectroscopy and dynamics of the quasi-linear S(2) state of chlorocarbene, CHCl, and its deuterated isotopologue using optical-optical double resonance (OODR) spectroscopy through selected rovibronic levels of the S(1) state. This study, which represents the first observation of the S(2) state in CHCl, builds upon our recent examination of the corresponding state in CHF, where pronounced mode specificity was observed in the dynamics, with predissociation rates larger for levels containing bending excitation. In the present work, a total of 14 S(2) state vibrational levels with angular momentum l = 1 were observed for CHCl, and 34 levels for CDCl.
View Article and Find Full Text PDFAtmospheric ozone is formed by the O + O(2) exchange reaction followed by collisional stabilization of the O(3)(∗) intermediate. The dynamics of the O + O(2) reaction and to a lesser extent the O(3) stabilization depend sensitively on the underlying potential energy surface, particularly in the asymptotic region. Highly accurate Davidson corrected multi-state multi-reference configuration interaction calculations reported here reveal that the minimal energy path for the formation of O(3) from O + O(2) is a monotonically decaying function of the atom-diatom distance and contains no "reef" feature found in previous ab initio calculations.
View Article and Find Full Text PDF