The intriguing characteristics of nanoparticles have fueled recent advancement in the field of nanotechnology. In the current study, a microbial-based bioflocculant made from the SCOBY of Kombucha tea broth was purified, profiled, and utilized to biosynthesize iron nanoparticles as a capping and reducing agent. UV-visible absorption spectroscopy, transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and TGA were used to characterize the Fe nanoparticles.
View Article and Find Full Text PDFStudying the production of Iron (Fe) nanoparticles using natural substances is an intriguing area of research in nanotechnology, as these nanoparticles possess biocompatibility and natural stability, which make them useful for a variety of industrial applications. The study utilized Fe nanoparticles that were synthesized using a bioflocculant and applied to eliminate different kinds of pollutants and dyes found in wastewater and solutions. The study involved the generation of Fe nanoparticles through a bioflocculant obtained from , which were evaluated for their flocculation and antimicrobial capabilities.
View Article and Find Full Text PDFA variety of flocculants have been used to aggregate colloidal substances. However, recently, owing to the adverse effects and high costs of conventional flocculants, natural flocculants such as microbial flocculants are gaining attention. The aim of the study was to produce and characterize a bioflocculant from MH545928.
View Article and Find Full Text PDF