Publications by authors named "Ph Laurent"

A straightforward slippage strategy has been used for the synthesis of three [2]rotaxane building blocks that all contain an ammonium template for the dibenzo-24-crown-8 macrocycle and an N-hydroxysuccinimide end. The kinetic rate of the slipping-on process proved to be highly dependent on both the length and flexibility of the thread.

View Article and Find Full Text PDF

In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation.

View Article and Find Full Text PDF

We report tests of local position invariance based on measurements of the ratio of the ground state hyperfine frequencies of 133Cs and 87Rb in laser-cooled atomic fountain clocks. Measurements extending over 14 years set a stringent limit to a possible variation with time of this ratio: d ln(ν(Rb)/ν(Cs))/dt=(-1.39±0.

View Article and Find Full Text PDF

We report on the first absolute transition frequency measurement at the 10;{-15} level with a single, laser-cooled 40Ca+ ion in a linear Paul trap. For this measurement, a frequency comb is referenced to the transportable Cs atomic fountain clock of LNE-SYRTE and is used to measure the 40Ca+ 4s ;{2}S_{1/2}-3d ;{2}D_{5/2} electric-quadrupole transition frequency. After the correction of systematic shifts, the clock transition frequency nu_{Ca;{+}}=411 042 129 776 393.

View Article and Find Full Text PDF

Over five years, we have compared the hyperfine frequencies of 133Cs and 87Rb atoms in their electronic ground state using several laser-cooled 133Cs and 87Rb atomic fountains with an accuracy of approximately 10(-15). These measurements set a stringent upper bound to a possible fractional time variation of the ratio between the two frequencies: d/dt ln([(nu(Rb))/(nu(Cs))]=(0.2+/-7.

View Article and Find Full Text PDF