Pseudoxanthoma elasticum (PXE), a prototype of heritable multisystem disorders, is characterised by pathologic mineralisation of connective tissues, with primary clinical manifestations in the skin, eyes and the cardiovascular system. The causative gene was initially identified as ABCC6 which encodes an ABC transporter protein (ABCC6) expressed primarily in the liver and the kidneys. The critical role of ABCC6 in ectopic mineralisation has been confirmed by the development of Abcc6(-/-) knock-out mice which recapitulate the features of connective tissue mineralisation characteristic of PXE.
View Article and Find Full Text PDFDystrophic epidermolysis bullosa can be inherited in autosomal dominant and recessive forms, the former usually expressed as a milder phenotype, although mild forms of recessive dystrophic epidermolysis bullosa can occur. We present a patient who was found to be a compound heterozygote, inheriting a dominant mutation from his father and a recessive mutation from his mother, resulting in a clinically severe case of dystrophic epidermolysis bullosa. Mutations in the gene for collagen VII (COL7A1) have been documented in both types of dystrophic epidermolysis bullosa.
View Article and Find Full Text PDFPseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, and is characterized by ectopic mineralization of elastic fibers of connective tissues. Since the identification of the ABCC6 gene (ATP-binding cassette family C member 6), which encodes a putative transmembrane transporter (ABCC6), as the site of mutations responsible for PXE, a number of researchers have disclosed mutations spanning the entire gene. An important advance in the ability to identify mutations has been the identification of two closely related pseudogenes and identifying sequence differences between the coding gene and the pseudogenes allowing accurate sequencing.
View Article and Find Full Text PDFBackground: Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder with considerable phenotypic variability, mainly affects the eyes, skin and cardiovascular system, characterised by dystrophic mineralization of connective tissues. It is caused by mutations in the ABCC6 (ATP binding cassette family C member 6) gene, which encodes MRP6 (multidrug resistance-associated protein 6).
Objective: To investigate the mutation spectrum of ABCC6 and possible genotype-phenotype correlations.
Background: The dystrophic forms of epidermolysis bullosa (DEB), a group of heritable blistering disorders, show considerable phenotypic variability, and both autosomal dominant and autosomal recessive inheritance can be recognised. DEB is derived from mutations in the type VII collagen gene (COL7A1), encoding a large collagenous protein that is the predominant, if not exclusive, component of the anchoring fibrils at the dermal-epidermal junction.
Methods: The Dystrophic Epidermolysis Bullosa Research Association Molecular Diagnostics Laboratory (Philadelphia, Pennsylvania, USA), established in 1996, has analysed more than 1000 families with different forms of epidermolysis bullosa, among them 332 families with DEB.
Introduction: Epidermolysis bullosa (EB), a group of autosomal heritable blistering diseases, is characterised by extensive phenotypic variability with considerable morbidity and mortality. EB is classified into distinct subtypes depending on the location of blistering within the cutaneous dermoepidermal basement membrane zone. Ten genes are known to harbour mutations in the major types of EB, and the level of expression of these genes within the cutaneous basement membrane zone and in extracutaneous tissues, as well as the types and combinations of the mutations, explain in general terms the phenotypic variability.
View Article and Find Full Text PDFEpidermolysis bullosa (EB) encompasses a large group of inherited blistering skin disorders caused by mutations in at least 10 genes. Numerous studies, mainly performed in European and US families with EB, have revealed a number of characteristic epidemiological and genetic features, which form the basis for current diagnostic and counseling strategies. However, little is currently known about the molecular epidemiology of EB in Middle East populations.
View Article and Find Full Text PDFEpidermolysis bullosa simplex (EBS) is a mechano-bullous disorder characterized by intraepidermal blistering within the basal keratinocytes as a result of trauma to the skin. As part of the DNA diagnostics program, our laboratory has analyzed a cohort of 57 patients with the initial referral diagnosis of EBS. Among these patients, 18 were found to harbor heterozygous mutations in the keratin 5 or keratin 14 genes, KRT5 and KRT14, respectively, whereas in 14 cases, the disease was associated with mutations in both alleles of the plectin gene.
View Article and Find Full Text PDFExp Dermatol
April 2005
Plectin, a large multidomain adhesive protein with versatile binding functions, is expressed in a number of tissues and cell types. In the skin, plectin is a critical component of hemidesmosomes, interacting with keratin intermediate filaments and beta4 integrin. Mutations in the plectin gene (PLEC1) result in fragility of skin, demonstrating blister formation at the level of hemidesmosomes.
View Article and Find Full Text PDFJ Invest Dermatol
January 2005
Epidermolysis bullosa with pyloric atresia (EB-PA), manifesting with neonatal blistering and gastric anomalies, is known to be caused by mutations in the hemidesmosomal genes ITGA6 and ITGB4, which encode the alpha6 and beta4 integrin polypeptides, respectively. As part of our molecular diagnostics program, we have now encountered four families with EB-PA in which no mutations could be identified in these two genes. Instead, PCR amplification followed by heteroduplex scanning and/or direct nucleotide sequencing revealed homozygous mutations in the plectin gene (PLEC1), encoding another hemidesmosomal protein previously linked to EB with muscular dystrophy.
View Article and Find Full Text PDFUnlabelled: Epidermolysis bullosa simplex with muscular dystrophy (OMIM 226670) is an autosomal recessive disorder caused by mutations of the human plectin gene on chromosome 8q24. Here, we report a 3-year-old girl, offspring of a consanguineous Lebanese family, who presented with skin blistering and recurrent episodes of severe respiratory distress necessitating tracheotomy at the age of 2 years. Repeated examination did not provide any evidence of muscle involvement.
View Article and Find Full Text PDFProgress in our understanding of the molecular basis of heritable diseases, through identification of specific mutations, has provided a foundation for the development of DNA-based prenatal diagnosis. Genetic analysis of fetal DNA is now routinely performed from chorionic villus samples obtained as early as the tenth week of gestation or by amniocentesis from week 15 onwards. However, both of these approaches involve invasive procedures with increased risk of fetal loss.
View Article and Find Full Text PDFEpidermolysis bullosa (EB) is a group of inherited disorders characterized by increased skin fragility, resulting in blisters and erosions after minor trauma. Mutations in 10 structural genes expressed in the cutaneous basement membrane zone have been reported. The DebRA Molecular Diagnostics Laboratory at Jefferson Medical College has performed 144 DNA-based prenatal diagnoses since 1993 in families at risk for recurrence of the most severe forms of EB, including the recessive dystrophic EB (RDEB), junctional EB (JEB), EB with pyloric atresia (EB-PA), and EB simplex (EBS).
View Article and Find Full Text PDFBackground: Epidermolysis bullosa simplex (EBS) is the most common form of epidermolysis bullosa. The disease is characterized by intraepidermal blistering due in most cases to mutations in cytokeratin genes 5 (K5) or 14 (K14). Extensive studies in the United States and Europe have shown that EBS is almost always inherited in an autosomal dominant fashion.
View Article and Find Full Text PDFThe cytoskeleton of epithelial cells is formed by heteropolymeric keratin proteins characterized by a central alpha-helical rod flanked by nonhelical head and tail domains of variable sequence. Most mutations described in 18 distinct keratins disrupt highly conserved regions at the boundaries of the rod, which have been recognized as zones of overlap during keratin alignment and assembly into intermediate filaments. We recently reported the first mutation located in a keratin tail domain (V2) in ichthyosis hystrix Curth-Macklin.
View Article and Find Full Text PDFMutations of the human plectin gene (Plec1) cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Here, we report on molecular mechanisms leading to severe dystrophic muscle alterations in EBS-MD. Analysis of a 25-yr-old EBS-MD patient carrying a novel homozygous 16-bp insertion mutation (13803ins16/13803ins16) close to the intermediate filament (IF) binding site of plectin showed severe disorganization of the myogenic IF cytoskeleton.
View Article and Find Full Text PDF