Background: Recent literature has found a consensus in favor of conservative treatment for type II supracondylar humeral fractures (SCHF). This retrospective observational study compares the short- to medium-term functional outcomes of conservative versus surgical treatment in 31 patients with SCHF (Gartland II and III) to assess the potential superiority of one approach over the other.
Materials And Methods: Thirty-one pediatric patients treated for SCHF-19 classified as Gartland II and 12 as Gartland III-were assessed in our department.
Arrays of Josephson junctions are at the forefront of research on quantum circuitry for quantum computing, simulation, and metrology. They provide a testing bed for exploring a variety of fundamental physical effects where macroscopic phase coherence, nonlinearities, and dissipative mechanisms compete. Here we realize finite-circulation states in an atomtronic Josephson junction necklace, consisting of a tunable array of tunneling links in a ring-shaped superfluid.
View Article and Find Full Text PDFA new class of superfluids and superconductors with spatially periodic modulation of the superfluid density is arising. It might be related to the supersolid phase of matter, in which the spontaneous breaking of gauge and translational symmetries leads to a spatially modulated macroscopic wavefunction. This relation was recognized only in some cases and there is the need for a universal property quantifying the differences between supersolids and ordinary matter, such as the superfluid fraction, which measures the reduction in superfluid stiffness resulting from the spatial modulation.
View Article and Find Full Text PDFThe expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species.
View Article and Find Full Text PDFThe high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector. The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state by driving a Rabi coupling between the two hyperfine clock levels.
View Article and Find Full Text PDFThe transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied.
View Article and Find Full Text PDFThe identification of the protospacer adjacent motif (PAM) sequences of Cas9 nucleases is crucial for their exploitation in genome editing. Here we develop a computational pipeline that was used to interrogate a massively expanded dataset of metagenome and virome assemblies for accurate and comprehensive PAM predictions. This procedure allows the identification and isolation of sequence-tailored Cas9 nucleases by using the target sequence as bait.
View Article and Find Full Text PDFWe explore the possibility to overcome the standard quantum limit (SQL) in a free-fall atom interferometer using a Bose-Einstein condensate (BEC) in either of the two relevant cases of Bragg or Raman scattering light pulses. The generation of entanglement in the BEC is dramatically enhanced by amplifying the atom-atom interactions via the rapid action of an external trap, focusing the matter waves to significantly increase the atomic densities during a preparation stage-a technique we refer to as delta-kick squeezing (DKS). The action of a second DKS operation at the end of the interferometry sequence allows one to implement a nonlinear readout scheme, making the sub-SQL sensitivity highly robust against imperfect atom counting detection.
View Article and Find Full Text PDFThe generation and verification of genuine multipartite nonlocality (GMN) is of central interest for both fundamental research and quantum technological applications, such as quantum privacy. To demonstrate GMN in measurement data, the statistics are commonly postselected by neglecting undesired data. Until now, valid postselection strategies have been restricted to local postselection.
View Article and Find Full Text PDFCancer stem cells (CSCs) represent a population of cells within the tumor able to drive tumorigenesis and known to be highly resistant to conventional chemotherapy and radiotherapy. In this work, we show a new role for ETV7, a transcriptional repressor member of the ETS family, in promoting breast cancer stem-like cells plasticity and resistance to chemo- and radiotherapy in breast cancer (BC) cells. We observed that MCF7 and T47D BC-derived cells stably over-expressing ETV7 showed reduced sensitivity to the chemotherapeutic drug 5-fluorouracil and to radiotherapy, accompanied by an adaptive proliferative behavior observed in different culture conditions.
View Article and Find Full Text PDFBackground: Proximal humeral fractures (PHF) account for 4-6% of all fractures and 25% of humeral fractures. While conservative treatment is the gold standard for simple fractures, there is no consensus about the best treatment choice for complex PHF in the elderly. Recently a new external fixator was introduced in clinical practice for treatment of complex PHF.
View Article and Find Full Text PDFDespite intensive research, the physical origin of the speed-up offered by quantum algorithms remains mysterious. No general physical quantity, like, for instance, entanglement, can be singled out as the essential useful resource. Here we report a close connection between the trace speed and the quantum speed-up in Grover's search algorithm implemented with pure and pseudo-pure states.
View Article and Find Full Text PDFPhys Rev Lett
November 2020
We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability while avoiding nondestructive measurements. When optimized with respect to the total number of particles, the protocol surpasses the state-of-the-art proposals that use Greenberger-Horne-Zeilinger or NOON states.
View Article and Find Full Text PDFSqueezing currently represents the leading strategy for quantum enhanced precision measurements of a single parameter in a variety of continuous- and discrete-variable settings and technological applications. However, many important physical problems including imaging and field sensing require the simultaneous measurement of multiple unknown parameters. The development of multiparameter quantum metrology is yet hindered by the intrinsic difficulty in finding saturable sensitivity bounds and feasible estimation strategies.
View Article and Find Full Text PDFMacroscopic superposition states enable fundamental tests of quantum mechanics and hold a huge potential in metrology, sensing, and other quantum technologies. We propose to generate macroscopic superposition states of a large number of atoms in the ground state of a spin-1 Bose-Einstein condensate. Measuring the number of particles in one mode prepares with large probability highly entangled macroscopic superposition states in the two remaining modes.
View Article and Find Full Text PDFDespite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies.
View Article and Find Full Text PDFThe quantum noise of the vacuum limits the achievable sensitivity of quantum sensors. In non-classical measurement schemes the noise can be reduced to overcome this limitation. However, schemes based on squeezed or Schrödinger cat states require alignment of the relative phase between the measured interaction and the non-classical quantum state.
View Article and Find Full Text PDFObjectives: To analyze p53 mutations and gene expression of p53, ∆40p53, and ∆133p53 isoforms in renal cell cancer (RCC) tissues and normal adjacent tissue (NAT) and to associate them to clinical features and outcome.
Patients And Methods: Forty-one randomly selected patients, with primary, previously untreated RCC, with complete clinicopathohistological data were analyzed. NAT samples were available for 37 cases.
The well-known metrological linear squeezing parameters (such as quadrature or spin squeezing) efficiently quantify the sensitivity of Gaussian states. Yet, these parameters are insufficient to characterize the much wider class of highly sensitive non-Gaussian states. Here, we introduce a class of metrological nonlinear squeezing parameters obtained by analytical optimization of measurement observables among a given set of accessible (possibly nonlinear) operators.
View Article and Find Full Text PDFThe interplay of quantum and thermal fluctuations in the vicinity of a quantum critical point characterizes the physics of strongly correlated systems. Here we investigate this interplay from a quantum information perspective presenting the universal phase diagram of the quantum Fisher information at a quantum phase transition. Different regions in the diagram are identified by characteristic scaling laws of the quantum Fisher information with respect to temperature.
View Article and Find Full Text PDFWe identify precision limits for the simultaneous estimation of multiple parameters in multimode interferometers. Quantum strategies to enhance the multiparameter sensitivity are based on entanglement among particles, modes, or combining both. The maximum attainable sensitivity of particle-separable states defines the multiparameter shot-noise limit, which can be surpassed without mode entanglement.
View Article and Find Full Text PDFFrequentist and Bayesian phase estimation strategies lead to conceptually different results on the state of knowledge about the true value of an unknown parameter. We compare the two frameworks and their sensitivity bounds to the estimation of an interferometric phase shift limited by quantum noise, considering both the cases of a fixed and a fluctuating parameter. We point out that frequentist precision bounds, such as the Cramér-Rao bound, for instance, do not apply to Bayesian strategies and vice versa.
View Article and Find Full Text PDFBreast cancer treatment often includes Doxorubicin as adjuvant as well as neoadjuvant chemotherapy. Despite its cytotoxicity, cells can develop drug resistance to Doxorubicin. Uncovering pathways and mechanisms involved in drug resistance is an urgent and critical aim for breast cancer research oriented to improve treatment efficacy.
View Article and Find Full Text PDFSeveral studies have revealed that endosomal sorting controls the steady-state levels of Notch at the cell surface in normal cells and prevents its inappropriate activation in the absence of ligands. However, whether this highly dynamic physiologic process can be exploited to counteract dysregulated Notch signaling in cancer cells remains unknown. T-ALL is a malignancy characterized by aberrant Notch signaling, sustained by activating mutations in Notch1 as well as overexpression of Notch3, a Notch paralog physiologically subjected to lysosome-dependent degradation in human cancer cells.
View Article and Find Full Text PDFLysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being understood. In particular, despite the long-standing accepted concept about the role of lysosomes as cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of cellular transformation and cancer progression lysosomes are changing localization, composition, and volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness.
View Article and Find Full Text PDF